Global-Local Attention Network for Semantic Segmentation in Aerial Images

被引:8
作者
Li, Minglong [1 ]
Shan, Lianlei [1 ]
Li, Xiaobin [1 ]
Bai, Yang [1 ]
Zhou, Dengji [1 ,2 ]
Wang, Weiqiang [1 ]
Lv, Ke [1 ]
Luo, Bin [3 ]
Chen, Si-Bao [3 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Anhui Univ, Sch Comp Sci & Technol, MOE Key Lab Signal Proc & Intelligent Comp, Hefei 230601, Peoples R China
来源
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2021年
关键词
D O I
10.1109/ICPR48806.2021.9412089
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Errors in semantic segmentation could be classified into two types: the large area misclassification and inaccurate local boundaries. Previously attention-based methods typically capture rich global contextual information, which benefits the large area classification but cannot address the local errors of boundaries. In this paper, we propose a Global-Local Attention Network (GLANet) which can simultaneously consider the global context and local details. Specifically, our GLANet consists of two branches: (1) the global attention branch and (2) local attention branch. Furthermore, three different modules are embedded in GLANet for respectively modelling the semantic interdependencies in spatial, channel and boundary dimension. Lastly, we merge the outputs of different branches to enhance the feature representation further, resulting in more precise segmentation. Overall, the proposed method achieves the competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over the existing baselines.
引用
收藏
页码:5704 / 5711
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2017, P IEEE C COMP VIS PA
[2]   On time-constant robust tuning of fractional order [proportional derivative] controllers [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (05) :1179-1186
[3]  
Chen L., 2015, 2015 IEEE CUSTOM INT, P1
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   All You Need is a Few Shifts: Designing Efficient Convolutional Neural Networks for Image Classification [J].
Chen, Weijie ;
Xie, Di ;
Zhang, Yuan ;
Pu, Shiliang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7234-7243
[7]   Boundary-Aware Feature Propagation for Scene Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Liu, Ai Qun ;
Thalmann, Nadia Magnenat ;
Wang, Gang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6818-6828
[8]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269