Reactive power sharing cannot be achieved using many existing microgrid (MG) control methods, but the convergence speed of these methods is slow. To solve these problems, a finite-time distributed control approach is proposed in this paper, which is based on the hierarchical control structure. The hierarchical control structure consists of a dual loop control, a droop control used as a primary control and a secondary control. First, the secondary controller is modeled, and the MG system composed of distributed generators (DGs) is considered as a multi-agent system. The secondary controller consists of a frequency regulator, voltage regulator and power regulator. Secondly, the adaptive virtual impedance module is established, using the output of the reactive power regulator as its input. Thirdly, a dual loop controller is combined with a primary controller and secondary controller to generate a pulse width modulation (PWM) signal to control the power and voltage of the MG. In order to reduce the fluctuation of the MG, a damping module is introduced when the structure of the system changes. Finally, the stability of the proposed control strategy is proved by the related theorems. A simulation system is established in the Matlab environment, and the simulation results show that the proposed method is effective.