High-performance double-network ionogels enabled by electrostatic interaction

被引:12
|
作者
Zhang, Yawen [1 ,2 ]
Chang, Li [2 ,3 ]
Sun, Peiru [1 ,2 ]
Cao, Ziquan [4 ]
Chen, Yong [1 ]
Liu, Hongliang [2 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Met & Mat Engn, Chongqing 400050, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Lanzhou Univ, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Dept Chem, Lanzhou 730000, Peoples R China
[4] Beihang Univ, Sch Chem, Minist Educ, Key Lab Bioinspired Smart Interfacial Sci & Techn, 37 Xueyuan Rd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
IONIC-LIQUID; TEMPERATURE; ELECTROLYTE; TRANSPARENT; TRANSISTORS; POLYMERS; TOUGH; GELS;
D O I
10.1039/c9ra09632a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Production of highly conductive and mechanically robust ionogels is urgently needed for the development of diverse flexible electrical devices, but it remains challenging. Herein, we report a facile strategy to prepare high-performance ionogels (ionic conductivity of 1.9 S m(-1), fracture strain of 170%) via electrostatic interaction between mechanically robust charged gel double networks and conductive ionic liquids. Ionogels based on charged polymer networks (with electrostatic interaction) exhibit obvious higher optical transmittance, ionic conductivity, and better mechanical properties compared with those based on neutral polymer networks (without electrostatic interaction). Ionic conductivity and mechanical properties of the ionogels can also be regulated by the double-network structure of the gels. We further develop an ionic skin sensor with the high-performance ionogels used as ionic conductors, which can exhibit excellent sensing performance even under harsh conditions. We envision that this new class of high-performance ionogels would be an attractive alternative to traditional hydrogels, and would extend the applications of ionic conductors to extreme environments.
引用
收藏
页码:7424 / 7431
页数:8
相关论文
共 50 条
  • [1] Double-Network Ion Channels for High-Performance Osmotic Power Generation
    Li, Xuejiang
    Xiao, Tianliang
    Lu, Bingxin
    He, Jianwei
    Zhai, Jin
    ADVANCED MATERIALS INTERFACES, 2022, 9 (03)
  • [2] Nonprestretching double-network enabled by physical interaction-induced aggregation
    Huang, Yu-Ting
    Zhou, Yu
    Yu, Wei-Wei
    Liao, Shuangquan
    Luo, Ming-Chao
    POLYMER, 2022, 256
  • [3] Super Stretchable and Durable Electroluminescent Devices Based on Double-Network Ionogels
    Dinh Xuan, Hiep
    Timothy, Bernard
    Park, Ho-Yeol
    Lam, Tuyet Nhi
    Kim, Dowan
    Go, Yeonjeong
    Kim, Jongyoun
    Lee, Youngu
    Ahn, Sung Il
    Jin, Sung-Ho
    Yoon, Jinhwan
    ADVANCED MATERIALS, 2021, 33 (25)
  • [4] Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors
    Yang, Yongrui
    Zhang, Dong
    Liu, Yanghe
    Shen, Lening
    Zhu, Tao
    Xu, Xinjian
    Zheng, Jie
    Gong, Xiong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34168 - 34177
  • [5] Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics
    Zeng, Sheng
    Zhang, Junyao
    Zu, Guoqing
    Huang, Jia
    CARBOHYDRATE POLYMERS, 2021, 267
  • [6] Robust double-network polyvinyl alcohol-polypyrrole hydrogels as high-performance electrodes for flexible supercapacitors
    Li, Wenzheng
    Chen, Wei
    Ma, Linzheng
    Yang, Jing
    Gao, Meng
    Wang, Kunhua
    Yu, Hao
    Lv, Ruitao
    Fu, Min
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 540 - 548
  • [7] High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors
    Wei, Jinmei
    Liu, Chenglu
    Shi, Lin
    Liu, Yongpin
    Lu, Huidan
    CARBOHYDRATE POLYMERS, 2025, 350
  • [8] Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics
    Zeng, Sheng
    Zhang, Junyao
    Zu, Guoqing
    Huang, Jia
    Carbohydrate Polymers, 2021, 267
  • [9] A high-performance GelMA-GelMA homogeneous double-network hydrogel assisted by 3D printing
    Dong, Yipeng
    Zhang, Mingshan
    Han, Daobo
    Deng, Zhichao
    Cao, Xuewei
    Tian, Jianguo
    Ye, Qing
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (20) : 3906 - 3915
  • [10] High-Performance Double-Network Ion Gels with Fast Thermal Healing Capability via Dynamic Covalent Bonds
    Tang, Zhehao
    Lyu, Xiaolin
    Xiao, Anqi
    Shen, Zhihao
    Fan, Xinghe
    CHEMISTRY OF MATERIALS, 2018, 30 (21) : 7752 - 7759