Recent Advances in n-Type Thermoelectric Nanocomposites

被引:51
|
作者
Tang, Junhui [1 ]
Chen, Yanling [2 ,3 ]
McCuskey, Samantha R. [4 ,5 ]
Chen, Lidong [2 ]
Bazan, Guillermo C. [4 ,5 ]
Liang, Ziqi [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Mat Sci, Santa Barbara, CA 93106 USA
基金
中国国家自然科学基金;
关键词
carbon nanotubes; inorganic nanocrystals; layered superlattices; n-type semiconductors; thermoelectric nanocomposites; HIGH-PERFORMANCE; ELECTRONIC-PROPERTIES; FLUORIDE COMPOSITE; POWER-FACTOR; POLYMER; FILMS; MODULES; FUNDAMENTALS; ENHANCEMENT; DEVICES;
D O I
10.1002/aelm.201800943
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic/inorganic thermoelectric nanocomposites (TENCs) have seized great attention because they integrate the advantages of inorganic (i.e., high electrical conductivity) and organic (i.e., low thermal conductivity and mechanical flexibility) components. Major barriers that obstruct the development of this field are the lack of n-type TE materials and their relatively low performance, leaving the construction of TE devices difficult to realize. This review article is therefore focused on recent advances on n-type TENCs that primarily comprise carbon nanotube (CNT) and inorganic nanocrystal (NC)-based hybrids. CNT-based n-type TENCs are fabricated mainly by transforming the p-type CNT to n-type with organic dopants or by blending CNTs with n-type semiconducting polymers. NC-based n-type TENCs are typically obtained by blending semiconductor nanocrystals or metallic nanostructures with polymers. Additionally, the fabrication and thermoelectric performance of 2D layered superlattice structures are also reviewed. Finally, an outlook of n-type TENCs is given with a perspective for their possible future improvements.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] To enhance the performance of n-type organic thermoelectric materials
    Xin Wang
    Yongqiang Shi
    Liming Ding
    Journal of Semiconductors, 2022, 43 (02) : 8 - 10
  • [42] Realizing an N-Type Organic Thermoelectric ZT of 0.46
    Ma, Mingyu
    Ye, Gang
    Jang, Soyeong
    Kuang, Yazhuo
    Zhang, Linlong
    Shao, Shuyan
    Koster, L. Jan Anton
    Baran, Derya
    Liu, Jian
    ACS ENERGY LETTERS, 2025,
  • [43] p-type to n-type conductivity transition in thermoelectric CoSbS
    Kousar, H. Sajida
    Srivastava, Divya
    Karttunen, Antti J.
    Karppinen, Maarit
    Tewari, Girish C.
    APL MATERIALS, 2022, 10 (09)
  • [44] Thermoelectric Properties of Sintered n-Type and p-Type Tellurides
    J. Hassel
    J. Tervo
    Journal of Electronic Materials, 2013, 42 : 1745 - 1750
  • [45] Thermoelectric Properties of Sintered n-Type and p-Type Tellurides
    Hassel, J.
    Tervo, J.
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (07) : 1745 - 1750
  • [46] Recent development of n-type perovskite thermoelectrics
    Wang, Hongchao
    Su, Wenbin
    Liu, Jian
    Wang, Chunlei
    JOURNAL OF MATERIOMICS, 2016, 2 (03) : 225 - 236
  • [47] Organic Thermoelectric Materials from n-Type Polymer Semiconductors
    Li, Mingwei
    Shi, Yongqiang
    CHEMPLUSCHEM, 2023, 88 (06):
  • [48] THERMOELECTRIC POWER OF N-TYPE INSB IN A QUANTIZING MAGNETIC FIELD
    AMIRKHANOV, KI
    BASHIROV, RI
    GADZHIAL.MM
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1967, 1 (01): : 19 - +
  • [49] Hardness as a function of composition for n-type LAST thermoelectric material
    Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824, United States
    不详
    Journal of Alloys and Compounds, 2008, 455 (1-2): : 340 - 345
  • [50] Hardness as a function of composition for n-type LAST thermoelectric material
    Ren, F.
    Case, E. D.
    Timm, E. J.
    Schock, H. J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 455 (1-2) : 340 - 345