Recent Advances in n-Type Thermoelectric Nanocomposites

被引:53
作者
Tang, Junhui [1 ]
Chen, Yanling [2 ,3 ]
McCuskey, Samantha R. [4 ,5 ]
Chen, Lidong [2 ]
Bazan, Guillermo C. [4 ,5 ]
Liang, Ziqi [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Mat Sci, Santa Barbara, CA 93106 USA
基金
中国国家自然科学基金;
关键词
carbon nanotubes; inorganic nanocrystals; layered superlattices; n-type semiconductors; thermoelectric nanocomposites; HIGH-PERFORMANCE; ELECTRONIC-PROPERTIES; FLUORIDE COMPOSITE; POWER-FACTOR; POLYMER; FILMS; MODULES; FUNDAMENTALS; ENHANCEMENT; DEVICES;
D O I
10.1002/aelm.201800943
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic/inorganic thermoelectric nanocomposites (TENCs) have seized great attention because they integrate the advantages of inorganic (i.e., high electrical conductivity) and organic (i.e., low thermal conductivity and mechanical flexibility) components. Major barriers that obstruct the development of this field are the lack of n-type TE materials and their relatively low performance, leaving the construction of TE devices difficult to realize. This review article is therefore focused on recent advances on n-type TENCs that primarily comprise carbon nanotube (CNT) and inorganic nanocrystal (NC)-based hybrids. CNT-based n-type TENCs are fabricated mainly by transforming the p-type CNT to n-type with organic dopants or by blending CNTs with n-type semiconducting polymers. NC-based n-type TENCs are typically obtained by blending semiconductor nanocrystals or metallic nanostructures with polymers. Additionally, the fabrication and thermoelectric performance of 2D layered superlattice structures are also reviewed. Finally, an outlook of n-type TENCs is given with a perspective for their possible future improvements.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT:PSS-glycerol organic films [J].
Abd Rahman, Airul Azha ;
Umar, Akrajas Ali ;
Othman, Mohamad Habrul Ulum .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 66 :293-298
[2]   High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants [J].
An, Cheng Jin ;
Kang, Young Hun ;
Song, Hyeonjun ;
Jeong, Youngjin ;
Cho, Song Yun .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) :15631-15639
[3]   Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties [J].
Avery, Azure D. ;
Zhou, Ben H. ;
Lee, Jounghee ;
Lee, Eui-Sup ;
Miller, Elisa M. ;
Ihly, Rachelle ;
Wesenberg, Devin ;
Mistry, Kevin S. ;
Guillot, Sarah L. ;
Zink, Barry L. ;
Kim, Yong-Hyun ;
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. .
NATURE ENERGY, 2016, 1
[4]   Better thermoelectrics through glass-like crystals [J].
Beekman, Matt ;
Morelli, Donald T. ;
Nolas, George S. .
NATURE MATERIALS, 2015, 14 (12) :1182-1185
[5]   Carbon-Nanotube-Based Thermoelectric Materials and Devices [J].
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. ;
Cho, Chungyeon ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2018, 30 (11)
[6]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[7]   Flexible Thermoelectric Generators with Ultrahigh Output Power Enabled by Magnetic Field-Aligned Metallic Nanowires [J].
Chen, Yani ;
He, Minhong ;
Tang, Junhui ;
Bazan, Guillermo C. ;
Liang, Ziqi .
ADVANCED ELECTRONIC MATERIALS, 2018, 4 (09)
[8]   Bendable n-Type Metallic Nanocomposites with Large Thermoelectric Power Factor [J].
Chen, Yani ;
He, Minhong ;
Liu, Bin ;
Bazan, Guillermo C. ;
Zhou, Jun ;
Liang, Ziqi .
ADVANCED MATERIALS, 2017, 29 (04)
[9]  
Chen YN, 2015, ENERG ENVIRON SCI, V8, P401, DOI [10.1039/C4EE03297G, 10.1039/c4ee03297g]
[10]   A convenient and highly tunable way to n-type carbon nanotube thermoelectric composite film using common alkylammonium cationic surfactant [J].
Cheng, Xuejiang ;
Wang, Xin ;
Chen, Guangming .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (39) :19030-19037