Artificial intelligence for dermatopathology: Current trends and the road ahead

被引:20
作者
Chen, Simon B. [1 ,3 ]
Novoa, Roberto A. [1 ,2 ]
机构
[1] Stanford Univ, Dept Pathol, Stanford, CA USA
[2] Stanford Univ, Dept Dermatol, Stanford, CA USA
[3] Stanford Univ, Dept Pathol, 300 Pasteur Dr,L235,MC 5324, Stanford, CA 94305 USA
关键词
Artificial intelligence; Deep learning; Dermatopathology; Machine learning; LEVEL CLASSIFICATION; DEEP; PERFORMANCE; CANCER; IMAGES;
D O I
10.1053/j.semdp.2022.01.003
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Artificial intelligence (AI), including deep learning methods that leverage neural network-based algorithms, hold significant promise for dermatopathology and other areas of diagnostic pathology in research and clinical practice. There has been significant progress over past several years in applying AI to analyzing digital histopathology images for diagnosis. While much work in AI analysis of histopathology data remains investigational, recent regulatory agency approval in Europe and United States of AI-assisted tools for clinical use in histopathologic diagnosis of prostate and breast cancer herald broader movement of AI into the clinical diagnostic realm of anatomic pathology, including dermatopathology. However, significant challenges remain in translating AI from research into clinical practice, including algorithmic real-world performance, robustness to variation in data sets and practice settings, effective integration into clinical workflows, and cost effectiveness. This review introduces core concepts and terminology in AI, and assesses current progress and challenges in applying AI to dermatopathology.
引用
收藏
页码:298 / 304
页数:7
相关论文
共 105 条
[1]  
Aggarwal Pankaj, 2021, Clin Liver Dis (Hoboken), V17, P392, DOI 10.1002/cld.1071
[2]  
Cruz-Roa AA, 2013, LECT NOTES COMPUT SC, V8150, P403, DOI 10.1007/978-3-642-40763-5_50
[3]  
[Anonymous], GALEN PLATFORM
[4]  
[Anonymous], 2016, NIPS, DOI [DOI 10.1145/3065386, DOI 10.2165/00129785-200404040-00005]
[5]  
[Anonymous], Paige Receives First Ever FDA Approval for AI Product in Digital Pathology | Business Wire
[6]   An unsupervised feature learning framework for basal cell carcinoma image analysis [J].
Arevalo, John ;
Cruz-Roa, Angel ;
Arias, Viviana ;
Romero, Eduardo ;
Gonzalez, Fabio A. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 64 (02) :131-145
[7]   Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma [J].
Arrastia, Jean Le'Clerc ;
Heilenktoetter, Nick ;
Baguer, Daniel Otero ;
Hauberg-Lotte, Lena ;
Boskamp, Tobias ;
Hetzer, Sonja ;
Duschner, Niecole ;
Schaller, Joerg ;
Maass, Peter .
JOURNAL OF IMAGING, 2021, 7 (04)
[8]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[9]   Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Tiulpin, Aleksei ;
Kuecuekel, Hakan ;
Lundin, Mikael ;
Nordling, Stig ;
Sihto, Harri ;
Isola, Jorma ;
Lehtimaeki, Tiina ;
Kellokumpu-Lehtinen, Pirkko-Liisa ;
von Smitten, Karl ;
Joensuu, Heikki ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+