Structure-conditioned adversarial learning for unsupervised domain adaptation

被引:7
|
作者
Wang, Hui [1 ]
Tian, Jian [1 ]
Li, Songyuan [1 ]
Zhao, Hanbin [1 ]
Wu, Fei [1 ]
Li, Xi [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Peoples R China
关键词
Unsupervised domain adaptation; Image classification; Adversarial learning; Clustering;
D O I
10.1016/j.neucom.2022.04.094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) typically carries out knowledge transfer from a label-rich source domain to an unlabeled target domain by adversarial learning. In principle, existing UDA approaches mainly focus on the global distribution alignment between domains while ignoring the intrinsic local distribution properties. Motivated by this observation, we propose an end-to-end structure-conditioned adversarial learning scheme (SCAL) that is able to preserve the intra-class compactness during domain distribution alignment. By using local structures as structure-aware conditions, the proposed scheme is implemented in a structure-conditioned adversarial learning pipeline. The above learning procedure is iteratively performed by alternating between local structures establishment and structure conditioned adversarial learning. Experimental results demonstrate the effectiveness of the proposed scheme in UDA scenarios.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:216 / 226
页数:11
相关论文
共 50 条
  • [1] Joint bi-adversarial learning for unsupervised domain adaptation
    Tian, Qing
    Zhou, Jiazhong
    Chu, Yi
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [2] Crucial Semantic Classifier-based Adversarial Learning for Unsupervised Domain Adaptation
    Zhang, Yumin
    Gao, Yajun
    Li, Hongliu
    Yin, Ating
    Zhang, Duzhen
    Chen, Xiuyi
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [3] Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation
    Zhou, Lihua
    Ye, Mao
    Zhu, Xiatian
    Li, Shuaifeng
    Liu, Yiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4318 - 4326
  • [4] Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation
    Zhao, Xin
    Wang, Shengsheng
    IEEE ACCESS, 2019, 7 : 170448 - 170456
  • [5] Multiple adversarial networks for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    KNOWLEDGE-BASED SYSTEMS, 2021, 212 (212)
  • [6] Noise-residual Mixup for unsupervised adversarial domain adaptation
    Chunmei He
    Taifeng Tan
    Xianjun Fan
    Lanqing Zheng
    Zhengchun Ye
    Applied Intelligence, 2023, 53 : 3034 - 3047
  • [7] Noise-residual Mixup for unsupervised adversarial domain adaptation
    He, Chunmei
    Tan, Taifeng
    Fan, Xianjun
    Zheng, Lanqing
    Ye, Zhengchun
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3034 - 3047
  • [8] Unsupervised domain adaptation with adversarial learning for mass detection in mammogram
    Shen, Rongbo
    Yao, Jianhua
    Yan, Kezhou
    Tian, Kuan
    Jiang, Cheng
    Zhou, Ke
    NEUROCOMPUTING, 2020, 393 (393) : 27 - 37
  • [9] Reinforced domain adaptation with attention and adversarial learning for unsupervised person Re-ID
    Peiyi Wei
    Canlong Zhang
    Yanping Tang
    Zhixin Li
    Zhiwen Wang
    Applied Intelligence, 2023, 53 : 4109 - 4123
  • [10] Reinforced domain adaptation with attention and adversarial learning for unsupervised person Re-ID
    Wei, Peiyi
    Zhang, Canlong
    Tang, Yanping
    Li, Zhixin
    Wang, Zhiwen
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4109 - 4123