New Quinoxaline-Containing Monomers for Narrow-Bandgap Polymers

被引:2
作者
Keshtov, M. L. [1 ]
Kuklin, S. A. [1 ]
Konstantinov, I. O. [1 ]
Godovskii, D. Yu. [1 ]
Zou, Y. [3 ]
Ostapov, I. E. [2 ]
Makhaeva, E. E. [2 ]
Khokhlov, A. R. [1 ]
机构
[1] Russian Acad Sci, Nesmeyanov Inst Organoelement Cpds, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[3] Cent S Univ, Changsha, Hunan, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
ORGANIC PHOTOVOLTAICS;
D O I
10.1134/S001250081809001X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two new fused quinoxaline-containing monomers-2,3-bis(9-(2-decyltetradecyl)-9H-carbazol-3-yl)dithieno[3,2-f:2'3'-h]quinoxaline (M1) and 2,5-di(nonadecan-3-yl)bis[1,3]thiazolo[4,5-a:5',4'-c]bisthieno[3,2-h:2',3'-j]phenazine (M2)-have been synthesized in high yields of 88 and 83% as promising building blocks of D-A polymers for photovoltaic applications. The optical bandgaps, found from the absorption edge, are 2.79 and 2.88 eV, respectively. The HOMO/LUMO energies of M1 and M2 are -5.83/-2.96 and -5.83/-2.98 eV, respectively. Both monomers have low-lying HOMO levels, which is favorable for a high open-circuit voltage and a high stability in air in the development of PSCs. The E-g(ec) values of monomers M1 and M2 are 2.87 and 2.85 eV and are consistent well with the optical bandgap (2.79 and 2.88 eV, respectively).
引用
收藏
页码:195 / 200
页数:6
相关论文
共 13 条
  • [1] Thiophene-linked polyphenylquinoxaline: A new electron transport conjugated polymer for electroluminescent devices
    Cui, YT
    Zhang, XJ
    Jenekhe, SA
    [J]. MACROMOLECULES, 1999, 32 (11) : 3824 - 3826
  • [2] High glass transition temperature chromophore functionalised poly(phenylquinoxalines) for nonlinear optics
    Gubbelmans, E
    Van den Broeck, K
    Verbiest, T
    Van Beylen, M
    Persoons, A
    Samyn, C
    [J]. EUROPEAN POLYMER JOURNAL, 2003, 39 (05) : 969 - 976
  • [3] Recent advances in high performance donor-acceptor polymers for organic photovoltaics
    Holliday, Sarah
    Li, Yilin
    Luscombe, Christine K.
    [J]. PROGRESS IN POLYMER SCIENCE, 2017, 70 : 34 - 51
  • [4] Jung SH, 2003, POLYM BULL, V50, P251
  • [5] Lainne E.S., 2002, J MED CHEM, V45, P5604, DOI [10.1021/jm020310n, DOI 10.1021/JM020310N]
  • [6] Medium-Bandgap Conjugated Polymers Containing Fused Dithienobenzochalcogenadiazoles: Chalcogen Atom Effects on Organic Photovoltaics
    Lee, Jaewon
    Sin, Dong Hun
    Clement, J. Arul
    Kulshreshtha, Chandramouli
    Kim, Heung Gyu
    Song, Eunjoo
    Shin, Jisoo
    Hwang, Hyeongjin
    Cho, Kilwon
    [J]. MACROMOLECULES, 2016, 49 (24) : 9358 - 9370
  • [7] The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation
    Powell, Douglas M.
    Fu, Ran
    Horowitz, Kelsey
    Basore, Paul A.
    Woodhouse, Michael
    Buonassisi, Tonio
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (12) : 3395 - 3408
  • [8] RENAULT J, 1981, EUR J MED CHEM, V16, P545
  • [9] Toward High-Performance Polymer Photovoltaic Devices for Low-Power Indoor Applications
    Yang, Shun-Shing
    Hsieh, Zong-Chun
    Keshtov, Muchamed L.
    Sharma, Ganesh D.
    Chen, Fang-Chung
    [J]. SOLAR RRL, 2017, 1 (12):
  • [10] Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Well-Known PBDTTT Polymers
    Zhang, Shaoqing
    Ye, Long
    Hou, Jianhui
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (11)