Domain Generalisation with Domain Augmented Supervised Contrastive Learning

被引:0
作者
Hoang Son Le [1 ]
Akmeliawati, Rini [1 ]
Carneiro, Gustavo [1 ]
机构
[1] Univ Adelaide, Adelaide, SA, Australia
来源
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2021年 / 35卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalisation (DG) methods address the problem of domain shift, when there is a mismatch between the distributions of training and target domains. Data augmentation approaches have emerged as a promising alternative for DG. However, data augmentation alone is not sufficient to achieve lower generalisation errors. This project proposes a new method that combines data augmentation and domain distance minimisation to address the problems associated with data augmentation and provide a guarantee on the learning performance, under an existing framework. Empirically, our method outperforms baseline results on DG benchmarks.
引用
收藏
页码:15821 / 15822
页数:2
相关论文
共 12 条
  • [1] Albuquerque I., 2019, GEN UNSEEN DOMAINS V
  • [2] PadChest: A large chest x-ray image dataset with multi-label annotated reports
    Bustos, Aurelia
    Pertusa, Antonio
    Salinas, Jose-Maria
    de la Iglesia-Vaya, Maria
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 66
  • [3] AutoAugment: Learning Augmentation Strategies from Data
    Cubuk, Ekin D.
    Zoph, Barret
    Mane, Dandelion
    Vasudevan, Vijay
    Le, Quoc V.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 113 - 123
  • [4] David S. B., 2010, P 13 INT C ARTIFICIA, P129
  • [5] Dou Q, 2019, ADV NEUR IN, V32
  • [6] Irvin J, 2019, AAAI CONF ARTIF INTE, P590
  • [7] Khosla P., 2020, P NEURIPS
  • [8] Deeper, Broader and Artier Domain Generalization
    Li, Da
    Yang, Yongxin
    Song, Yi-Zhe
    Hospedales, Timothy M.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5543 - 5551
  • [9] Matsuura T., 2019, ARXIV191107661
  • [10] Quionero-Candela Joaquin, 2009, DATASET SHIFT MACHIN