Lithium, a path to make fusion energy affordable

被引:43
作者
de Castro, A. [1 ]
Moynihan, C. [1 ]
Stemmley, S. [1 ]
Szott, M. [1 ]
Ruzic, D. N. [1 ]
机构
[1] Univ Illinois, 104 S Wright St, Urbana, IL 61801 USA
关键词
FLOWING LIQUID LITHIUM; INTERNAL TRANSPORT BARRIER; HELIUM ASH REMOVAL; DEUTERIUM RETENTION; MAGNETIC-FIELD; POWER-PLANT; PLASMA; TOKAMAK; SURFACE; CONFINEMENT;
D O I
10.1063/5.0042437
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this tutorial article, we review the technological, physics, and economic basis for a magnetic fusion device utilizing a flowing liquid lithium divertor (molten metal velocity in the range of cm/s) and operating in a low-recycling plasma regime. When extrapolated to magnetic fusion reactor scale, the observed effects of a liquid lithium boundary on recycling reduction, confinement increase, and anomalous heat transport mitigation may offer a fundamentally distinct and promising alternative route to fusion energy production. In addition, this lithium-driven low recycling regime could accelerate fusion's commercial viability since such a device would be smaller, dramatically decreasing plant and electricity costs if all technological complexities are solved. First, the theoretical basis of the energy confinement and fusion performance as well as the related possibilities of low recycling regimes driven by flowing lithium plasma-facing components are reviewed. Then the paper emphasizes the technological obstacles that need to be overcome for developing the necessary systems for such a flowing liquid lithium solution at reactor scale and details how many of these have been overcome at laboratory and/or proof-of-concept scale. Finally, the current and planned scientific and engineering endeavors being performed at the University of Illinois at Urbana-Champaign regarding this alternative reactor option are discussed.
引用
收藏
页数:28
相关论文
共 205 条
[1]   Thermal-hydraulic studies in support of the ARIES-CS T-tube divertor design [J].
Abdel-Khalik, S. I. ;
Crosatti, L. ;
Sadowski, D. L. ;
Shin, S. ;
Weathers, J. B. ;
Yoda, M. .
FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (03) :864-877
[2]   On the exploration of innovative concepts for fusion chamber technology [J].
Abdou, MA ;
Ying, A ;
Morley, N ;
Gulec, K ;
Smolentsev, S ;
Kotschenreuther, M ;
Malang, S ;
Zinkle, S ;
Rognlien, T ;
Fogarty, P ;
Nelson, B ;
Nygren, R ;
McCarthy, K ;
Youssef, MZ ;
Ghoniem, N ;
Sze, D ;
Wong, C ;
Sawan, M ;
Khater, H ;
Woolley, R ;
Mattas, R ;
Moir, R ;
Sharafat, S ;
Brooks, J ;
Hassanein, A ;
Petti, D ;
Tillack, M ;
Ulrickson, M ;
Uchimoto, T .
FUSION ENGINEERING AND DESIGN, 2001, 54 (02) :181-247
[3]   Blanket/first wall challenges and required R&D on the pathway to DEMO [J].
Abdou, Mohamed ;
Morley, Neil B. ;
Smolentsev, Sergey ;
Ying, Alice ;
Malang, Siegfried ;
Rowcliffe, Arthur ;
Ulrickson, Mike .
FUSION ENGINEERING AND DESIGN, 2015, 100 :2-43
[4]   Collisional and thermal effects on liquid lithium sputtering [J].
Allain, J. P. ;
Coventry, M. D. ;
Ruzic, D. N. .
PHYSICAL REVIEW B, 2007, 76 (20)
[5]   Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois [J].
Allain, JP ;
Nieto, M ;
Coventry, MD ;
Stubbers, R ;
Ruzic, DN .
FUSION ENGINEERING AND DESIGN, 2004, 72 (1-3) :93-110
[6]   First experiments with lithium limiter on FTU [J].
Apicella, M. L. ;
Mazzitelli, G. ;
Ridolfini, V. Pericoll ;
Lazarev, V. ;
Alekseyev, A. ;
Vertkov, A. ;
Zagorski, R. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 :1346-1351
[7]  
Artsimovich L., 1957, Journal of Nuclear Energy (1954), V4, P203, DOI 10.1016/0891-3919(57)90055-4
[8]  
Artsimovich L.A, 1958, P 2 UN INT C PEAC US P 2 UN INT C PEAC US
[9]   Degradation of energy and particle confinement in high-density ELMy H-mode plasmas on JT-60U [J].
Asakura, N ;
Shimizu, K ;
Shirai, H ;
Koide, Y ;
Takizuka, T .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (09) :1295-1314
[10]   The ITER design [J].
Aymar, R ;
Barabaschi, P ;
Shimomura, Y .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (05) :519-565