PREDICTION FOR REWARD PROCESSES

被引:4
作者
Soltani, A. R. [1 ,2 ]
Khorshidian, K. [2 ,3 ]
Ghafaripour, A. [4 ]
机构
[1] Kuwait Univ, Dept Stat & Operat Res, Coll Sci, Safat 13060, Kuwait
[2] Shiraz Univ, Dept Stat, Coll Sci, Shiraz, Iran
[3] Persian Gulf Univ, Dept Math & Stat, Coll Sci, Booshehr, Iran
[4] Univ Yasuj, Dept Math, Coll Sci, Yasuj, Iran
关键词
Conditional expectation functions; Current life; Excess life; Prediction; Reward processes; Semi-Markov processes;
D O I
10.1080/15326341003756346
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider D(t) = [J(t), X (t), Z(rho)(t)], t = 0, where J (t) is a semi-Markov process, X (t) is the age process for J (t), and Z(rho) (t) is a reward process on J (t). In this article we produce a prediction formula to predict Z(rho) (t + s) based on the history D(t), the sigma-field generated by {D(u), u <= t}. In addition, we derive the conditional distribution of the excess life gamma(t) given [J (t), X (t)], which involves the quantity h(j,t), the probability that a sojourn in state j exceeds t.
引用
收藏
页码:242 / 255
页数:14
相关论文
共 10 条
[1]  
[Anonymous], 1975, Introduction to Stochastic Processes
[2]   ON MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES [J].
KEILSON, J .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06) :1901-&
[3]   A MULTIVARIATE REWARD PROCESS DEFINED ON A SEMI-MARKOV PROCESS AND ITS 1ST-PASSAGE-TIME DISTRIBUTIONS [J].
MASUDA, Y ;
SUMITA, U .
JOURNAL OF APPLIED PROBABILITY, 1991, 28 (02) :360-373
[4]  
Pyke R., 1964, The Annals of Mathematical Statistics, P1746, DOI 10.1214/aoms/1177700397
[5]   REGENERATIVE STOCHASTIC PROCESSES [J].
SMITH, WL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 232 (1188) :6-31
[6]  
Soitani AR, 2002, B IRANIAN MATH J, V28, P1
[7]   Reward processes for semi-Markov processes: Asymptotic behaviour [J].
Soltani, AR ;
Khorshidian, K .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (04) :833-842
[8]   Reward processes with nonlinear reward functions [J].
Soltani, AR .
JOURNAL OF APPLIED PROBABILITY, 1996, 33 (04) :1011-1017
[9]  
Spiegel M.R., 1965, Schaum's Outline of Theory and Problems of Laplace Transforms
[10]  
SUMITA U, 1987, STOCH MODELS, V3, P67