Fabrication of Si and Ge nanoarrays through graphoepitaxial directed hardmask block copolymer self-assembly

被引:2
|
作者
Gangnaik, Anushka S. [1 ]
Ghoshal, Tandra [1 ]
Georgiev, Yordan M. [1 ]
Morris, Michael A. [1 ]
Holmes, Justin D. [1 ]
机构
[1] Univ Coll Cork, Sch Chem & Tyndall Natl Inst, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
Germanium; Nanopatterns; Self-assembly; Trench; Pattern transfer; GERMANIUM; TEMPLATES; SURFACE; ARRAYS; ENERGY;
D O I
10.1016/j.jcis.2018.06.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Films of self assembled diblock copolymers (BCPs) have attracted significant attention for generating semiconductor nanoarrays of sizes below 100 nm through a simple low cost approach for device fabrication. A challenging abstract is controlling microdomain orientation and ordering dictated by complex interplay of surface energies, polymer-solvent interactions and domain spacing. In context, microphase separated poly (styrene-b-ethylene oxide) (PS-b-PEO) thin films is illustrated to fabricate nanopatterns on silicon and germanium materials trenches. The trenched templates was produced by simple electron beam lithography using hydrogen silsesquioxane (HSQ) resist. The orientation of PEO, minority cylinder forming block, was controlled by controlling trench width and varying solvent annealing parameters viz. temperature, time etc. A noticeable difference in microdomain orientation was observed for Si and Ge trenches processed under same conditions. The Ge trenches promoted horizontal orientations compared to Si due to difference in surface properties without any prior surface treatments. This methodology allows to create Ge nanopatterns for device fabrication since native oxides on Ge often induce patterning challenges. Subsequently, a selective metal inclusion method was used to form hardmask nanoarrays to pattern transfer into those substrates through dry etching. The hardmask allows to create good fidelity, low line edge roughness (LER) materials nanopatterns. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 50 条
  • [21] Diblock copolymer directed self-assembly for CMOS device fabrication
    Chang, Li-Wen
    Wong, H. S. Philip
    DESIGN AND PROCESS INTEGRATION FOR MICROELECTRONIC MANUFACTURING IV, 2006, 6156
  • [22] Engineering the domain roughness of block copolymer in directed self-assembly
    Lai, Hanwen
    Huang, Guangcheng
    Tian, Xin
    Liu, Yadong
    Ji, Shengxiang
    POLYMER, 2022, 249
  • [23] Halogen bond directed self-assembly of block copolymer complexes
    Ikkala, Olli
    Metrangolo, Pierangelo
    Resnati, Giuseppe
    Milani, Roberto
    Houbenov, Nikolay
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [24] Diblock copolymer directed self-assembly for CMOS device fabrication
    Chang, Li-Wen
    Caldwell, Marissa A.
    Wong, H. -S. Philip
    EMERGING LITHOGRAPHIC TECHNOLOGIES XII, PTS 1 AND 2, 2008, 6921
  • [25] Inducing block copolymer self-assembly through functionalization
    Magenau, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Fabrication of cylindrical nanoparticles via block copolymer self-assembly
    Killops, Kato L.
    Campos, Luis M.
    Lynd, Nathaniel A.
    Bang, Joona
    Hawker, Craig J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [27] Directed Self-Assembly of Block Copolymers for the Fabrication of Functional Devices
    Pinto-Gomez, Christian
    Perez-Murano, Francesc
    Bausells, Joan
    Villanueva, Luis Guillermo
    Fernandez-Regulez, Marta
    POLYMERS, 2020, 12 (10) : 1 - 20
  • [28] Advances in square arrays through self-assembly and directed self-assembly of block copolymers
    Hardy, Christopher G.
    Tang, Chuanbing
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2013, 51 (01) : 2 - 15
  • [29] Amphilic block copolymer self-assembly for directed synthesis of drug nanoparticles
    Prud'homme, Robert K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [30] Modeling of block copolymer dry etching for directed self-assembly lithography
    Belete, Zelalem
    Baer, Eberhard
    Erdmann, Andreas
    ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING VII, 2018, 10589