Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments

被引:9
|
作者
Gheysari, Mahdi [1 ]
Pirnajmedin, Fatemeh [2 ]
Movahedrad, Hamid [1 ]
Majidi, Mohammad Mahdi [2 ]
Zareian, Mohammad Javad [3 ]
机构
[1] Isfahan Univ Technol, Coll Agr, Dept Water Engn, Esfahan 8415683111, Iran
[2] Isfahan Univ Technol, Coll Agr, Dept Agron & Plant Breeding, Esfahan 8415683111, Iran
[3] Water Res Inst WRI, Dept Water Resource Res, Tehran, Iran
基金
美国国家科学基金会;
关键词
Drought stress; Irrigation management; Silage maize; Biomass; WPI; Yield response factor; SUBSURFACE DRIP IRRIGATION; ZEA-MAYS L; USE EFFICIENCY; DEFICIT IRRIGATION; CORN YIELD; MANAGEMENT STRATEGIES; RESPONSE FACTORS; SWEET CORN; NITROGEN; SOIL;
D O I
10.1016/j.agwat.2021.106999
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Research on water stress strategies (WSS) and crop response to water stress is important to improve irrigation water productivity (WPI) and crop production especially for regions where water is a limited resource. This study was conducted to assess (i) the response of silage maize to water stress at different growth stages for contrasting water stress strategies in the semi-arid environment under pot and field experiments irrigated by a drip-tape system, (ii) to determine the relationship between applied water and total biomass (TB) in different WSS in both experiments. The hybrid 704-single-cross of maize was assessed at pot experiment during 2009 and 2010 and field experiment was conducted in 2017 under two WSS including WS1 (same irrigation event with different applied water depth) and WS2 (same applied water depth in different irrigation event) at three growth stages. Each WSS consisted of four different irrigation levels, including severe, moderate, and mild drought stress and a full irrigation. In both pot and field experiments, severe drought stress under WS1 and WS2 strategies led to a depression in LA and TB at tassel (S2) and silage harvest (S3) stages. At each growth stage, WPI values decreased with increasing water-deficit levels in both WSS's and experiments. We found a linear relationship between TB and applied water for WS1 and WS2 in both experiments. However, the yield performance per unit of water used was higher for WS1 than for WS2. The yield response factor to stress (Ky) values for LA and TB were higher under WS2 than WS1 in both experiments, indicating that WS1 can be employed as an effective deficit irrigation management under the drip-tape irrigation system for maize in an arid area with shortage of water.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The effect of different irrigation treatments on yield and water productivity of Arachis Hypogaea L. under semi-arid conditions in Iran
    Dehkordi, Davoud Khodadadi
    IRRIGATION AND DRAINAGE, 2020, 69 (04) : 646 - 657
  • [22] Relationship between physiology and production of maize under different water replacements in the Brazilian semi-arid
    dos Anjos, Franklin A.
    Ferraz, Rener L. de S.
    de Azevedo, Carlos A., V
    Costa, Patricia da S.
    de Melo, Alberto S.
    Ramalho, Vitoria R. R. de A. R.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2022, 26 (01): : 21 - 27
  • [23] Increased Water Productivity of Wheat under Supplemental Irrigation and Nitrogen Application in a Semi-arid Region
    Tadayon, M. R.
    Ebrahimi, R.
    Tadayyon, A.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2012, 14 (05): : 995 - 1003
  • [24] Comparison of different irrigation methods to synergistically improve maize's yield, water productivity and economic benefits in an arid irrigation area
    Zhang, Tibin
    Zou, Yufeng
    Kisekka, Isaya
    Biswas, Asim
    Cai, Huanjie
    AGRICULTURAL WATER MANAGEMENT, 2021, 243
  • [25] Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation
    Attia, Ahmed
    El-Hendawy, Salah
    Al-Suhaibani, Nasser
    Alotaibi, Majed
    Tahir, Muhammad Usman
    Kamal, Khaled Y.
    AGRICULTURAL WATER MANAGEMENT, 2021, 249
  • [26] Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions
    Yerli, Caner
    Sahin, Ustun
    Ors, Selda
    Kiziloglu, Fatih Mehmet
    AGRICULTURAL WATER MANAGEMENT, 2023, 277
  • [27] Soil water extraction and use by winter wheat cultivars under limited irrigation in a semi-arid environment
    Thapa, Sushil
    Xue, Qingwu
    Jessup, Kirk E.
    Rudd, Jackie C.
    Liu, Shuyu
    Devkota, Ravindra N.
    Baker, Jason A.
    JOURNAL OF ARID ENVIRONMENTS, 2020, 174
  • [28] Farming practices and deficit irrigation management improve winter wheat crop water productivity and biomass through mitigated greenhouse gas intensity under semi-arid regions
    Ali, Shahzad
    Xu, Yueyue
    Ma, Xiangcheng
    Jia, Qianmin
    Jia, Zhikuan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (22) : 27666 - 27680
  • [29] Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semi-arid Mediterranean climate
    Patane, Cristina
    Saita, Alessandro
    CROP & PASTURE SCIENCE, 2015, 66 (02) : 224 - 234
  • [30] Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment
    Dominguez, A.
    Martinez, R. S.
    de Juan, J. A.
    Martinez-Romero, A.
    Tarjuelo, J. M.
    AGRICULTURAL WATER MANAGEMENT, 2012, 107 : 42 - 53