Oscillation of second-order nonlinear delay dynamic equations on time scales

被引:94
作者
Zhang, BG [1 ]
Zhu, SL [1 ]
机构
[1] Ocean Univ, Dept Math, Qingdao 266071, Peoples R China
关键词
oscillation; time scales; Riccati technique; delay dynamic equation;
D O I
10.1016/j.camwa.2004.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first, we establish the equivalence of the oscillation of the nonlinear dynamic equations x(Delta Delta) (t) + p(t)f(x(t -r)) = 0 and x(Delta Delta) (t) + p(t)(f o x(sigma)) = 0, on time scales, from which we obtain some oscillation criteria and comparison theorems for the first equation. Next, we obtain some new oscillation criteria for second-order linear dynamic equations on time scales. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 8 条
[1]  
BOHNER M., 2001, Dynamic equation on time scales. An introduction with applications
[2]   Comparison theorems for linear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Rehák, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :418-438
[3]   Oscillation criteria for second-order matrix dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :169-185
[4]  
ERBE L, IN PRESS OSCILLATION
[5]  
Erbe L.H., 1995, Oscillation Theory for Functional Differential Equations
[6]  
YAN J, 1987, ACTA MATH APPL SINIC, V10, P167
[7]   Oscillation of delay differential equations on time scales [J].
Zhang, BG ;
Deng, XH .
MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (11-13) :1307-1318
[8]  
ZHANG BG, 1997, ZEIT ANAL ANWEN, V16, P451