WOA with adaptive mutation operator to estimate parameters of heavy oil thermal cracking model

被引:0
作者
Zhang, Shuyue [1 ]
Wang, Ning [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
来源
2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE | 2019年 / 11321卷
基金
中国国家自然科学基金;
关键词
whale optimization algorithm (WOA); adaptive mutation operator; population sequencing strategy; heavy oil thermal cracking; OPTIMIZATION ALGORITHM; SEARCH;
D O I
10.1117/12.2539248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an enhanced whale optimization algorithm with adaptive mutation operator (amWOA). In amWOA, the adaptive mutation operator is designed to balance the global search and local search abilities. The population sequencing strategy is added to the mutation operator to help the algorithm jump out of the local optimum. The numerical results of three test functions show that the amWOA has better performance. The amWOA is adopted for parameter estimation of the heavy oil thermal cracking model. The simulation results show that the amWOA has the smallest modeling error.
引用
收藏
页数:6
相关论文
共 2 条
  • [1] Adaptive Cuckoo Search Algorithm for Parameter Estimation of Heavy Oil Thermal Cracking Model
    Chen, Yiping
    Wang, Ning
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2679 - 2684
  • [2] Parameters identification of Thevenin model for lithium-ion batteries using self-adaptive Particle Swarm Optimization Differential Evolution algorithm to estimate state of charge
    Wang, Chuan
    Xu, Minyi
    Zhang, Qinjin
    Feng, Jinhong
    Jiang, Ruizheng
    Wei, Yi
    Liu, Yancheng
    JOURNAL OF ENERGY STORAGE, 2021, 44