WOA with adaptive mutation operator to estimate parameters of heavy oil thermal cracking model
被引:0
作者:
Zhang, Shuyue
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
Zhang, Shuyue
[1
]
Wang, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
Wang, Ning
[1
]
机构:
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
来源:
2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE
|
2019年
/
11321卷
基金:
中国国家自然科学基金;
关键词:
whale optimization algorithm (WOA);
adaptive mutation operator;
population sequencing strategy;
heavy oil thermal cracking;
OPTIMIZATION ALGORITHM;
SEARCH;
D O I:
10.1117/12.2539248
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper proposes an enhanced whale optimization algorithm with adaptive mutation operator (amWOA). In amWOA, the adaptive mutation operator is designed to balance the global search and local search abilities. The population sequencing strategy is added to the mutation operator to help the algorithm jump out of the local optimum. The numerical results of three test functions show that the amWOA has better performance. The amWOA is adopted for parameter estimation of the heavy oil thermal cracking model. The simulation results show that the amWOA has the smallest modeling error.
机构:
Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
Chen, Yiping
Wang, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
Wang, Ning
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC),
2019,
: 2679
-
2684