A bode sensitivity integral for linear time-periodic systems

被引:3
|
作者
Sandberg, H [1 ]
Bernhardsson, B [1 ]
机构
[1] Lund Inst Technol, Dept Automat Control, SE-22100 Lund, Sweden
关键词
D O I
10.1109/CDC.2004.1428859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For linear time-invariant systems Bode's sensitivity integral is a well-known formula that quantifies some of the limitations in feedback control. In this paper we show that a very similar formula holds for linear time-periodic systems. We use the infinite-dimensional frequency-response operator called the harmonic transfer function to prove the result. It is shown that the harmonic transfer function is an analytic operator and a trace class operator under the assumption that the periodic system has roll-off 2. A periodic system has roll-off 2 if the first time-varying Markov parameter is equal to zero.
引用
收藏
页码:2644 / 2649
页数:6
相关论文
共 50 条
  • [1] A bode sensitivity integral for linear time-periodic systems
    Sandberg, H
    Bernhardsson, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (12) : 2034 - 2039
  • [2] A Bode-Like Integral for Discrete Linear Time-Periodic Systems
    Zhao, Yingbo
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2494 - 2499
  • [3] A Bode-like integral for discrete-time linear periodic systems
    Zhao, Yingbo
    Gupta, Vijay
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3994 - 3999
  • [4] Phase of linear time-periodic systems
    Chen, Wei
    AUTOMATICA, 2023, 151
  • [5] Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral
    Iglesias, PA
    AUTOMATICA, 2001, 37 (10) : 1541 - 1550
  • [6] PHASE IDENTIFICATION IN LINEAR TIME-PERIODIC SYSTEMS
    SVOBODNY, TP
    RUSSELL, DL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (02) : 218 - 220
  • [7] Phase identification in linear time-periodic systems
    Svobodny, Thomas P., 1600, (34):
  • [8] Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 145 - 150
  • [9] Discrete-time control of linear time-periodic systems
    Kalender, S.
    Flashner, H.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (04): : 0410091 - 0410099
  • [10] Linear Time-Periodic Systems with Exceptional Points of Degeneracy
    Kazemi, Hamidreza
    Nada, Mohamed Y.
    Mealy, Tarek
    Abdelshafy, Ahmed F.
    Capolino, Filippo
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1072 - 1073