Technical desiderata for the integration of genomic data into Electronic Health Records

被引:68
作者
Masys, Daniel R. [1 ]
Jarvik, Gail P. [2 ,3 ]
Abernethy, Neil F. [1 ]
Anderson, Nicholas R. [1 ]
Papanicolaou, George J. [4 ]
Paltoo, Dina N. [5 ]
Hoffman, Mark A. [6 ]
Kohane, Isaac S. [7 ]
Levy, Howard P. [8 ,9 ]
机构
[1] Univ Washington, Dept Med Educ & Biomed Informat, Div Biomed & Hlth Informat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med, Div Med Genet, Seattle, WA 98195 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] NHLBI, Div Prevent & Populat Sci, NIH, Bethesda, MD 20892 USA
[5] NHLBI, Adv Technol & Surg Branch, Div Cardiovasc Sci, NIH, Bethesda, MD 20892 USA
[6] Cemer Corp, Kansas City, MO USA
[7] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[8] Johns Hopkins Univ, Div Gen Internal Med, Baltimore, MD USA
[9] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD USA
关键词
Electronic Health Records; Genomics; Knowledge representation; Data compression; CARE; SEQUENCE;
D O I
10.1016/j.jbi.2011.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The era of "Personalized Medicine," guided by individual molecular variation in DNA, RNA, expressed proteins and other forms of high volume molecular data brings new requirements and challenges to the design and implementation of Electronic Health Records (EHRs). In this article we describe the characteristics of biomolecular data that differentiate it from other classes of data commonly found in EHRs, enumerate a set of technical desiderata for its management in healthcare settings, and of er a candidate technical approach to its compact and efficient representation in operational systems. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 422
页数:4
相关论文
共 50 条
[41]   The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data [J].
Ding, Daisy Yi ;
Simpson, Chloe ;
Pfohl, Stephen ;
Kale, Dave C. ;
Jung, Kenneth ;
Shah, Nigam H. .
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, :18-29
[42]   Using Knowledge Graph Structures for Semantic Interoperability in Electronic Health Records Data Exchanges [J].
Sachdeva, Shelly ;
Bhalla, Subhash .
INFORMATION, 2022, 13 (02)
[43]   Mining for equitable health: Assessing the impact of missing data in electronic health records [J].
Getzen, Emily ;
Ungar, Lyle ;
Mowery, Danielle ;
Jiang, Xiaoqian ;
Long, Qi .
JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 139
[44]   Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis [J].
Beaulieu-Jones, Brett K. ;
Lavage, Daniel R. ;
Snyder, John W. ;
Moore, Jason H. ;
Pendergrass, Sarah A. ;
Bauer, Christopher R. .
JMIR MEDICAL INFORMATICS, 2018, 6 (01)
[45]   Explore Data Quality Challenges Based on Data Structure of Electronic Health Records [J].
Liu, Caihua ;
Peng, Guochao ;
Lan, Chaowang ;
Kong, Shufeng .
HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION, HIMI 2023, PT I, 2023, 14015 :236-247
[46]   Value Implications of Sourcing Electronic Health Records: The Role of Physician Practice Integration [J].
Bardhan, Indranil R. ;
Bao, Chenzhang ;
Ayabakan, Sezgin .
INFORMATION SYSTEMS RESEARCH, 2023, 34 (03) :1169-1190
[47]   Key influencing factors of vertical integration of electronic health records in medical consortiums [J].
Tian, Sheng-Hu ;
Chen, Yu ;
Bai, Tao-Zhen .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 170
[48]   Visual Analytics for Electronic Health Records: A Review [J].
Rostamzadeh, Neda ;
Abdullah, Sheikh S. ;
Sedig, Kamran .
INFORMATICS-BASEL, 2021, 8 (01)
[49]   IMPLEMENTING ELECTRONIC HEALTH RECORDS IN THE EMERGENCY DEPARTMENT [J].
Handel, Daniel A. ;
Hackman, Jeffrey L. .
JOURNAL OF EMERGENCY MEDICINE, 2010, 38 (02) :257-263
[50]   Automated methods for the summarization of electronic health records [J].
Pivovarov, Rimma ;
Elhadad, Noemie .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (05) :938-947