Technical desiderata for the integration of genomic data into Electronic Health Records

被引:68
作者
Masys, Daniel R. [1 ]
Jarvik, Gail P. [2 ,3 ]
Abernethy, Neil F. [1 ]
Anderson, Nicholas R. [1 ]
Papanicolaou, George J. [4 ]
Paltoo, Dina N. [5 ]
Hoffman, Mark A. [6 ]
Kohane, Isaac S. [7 ]
Levy, Howard P. [8 ,9 ]
机构
[1] Univ Washington, Dept Med Educ & Biomed Informat, Div Biomed & Hlth Informat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med, Div Med Genet, Seattle, WA 98195 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] NHLBI, Div Prevent & Populat Sci, NIH, Bethesda, MD 20892 USA
[5] NHLBI, Adv Technol & Surg Branch, Div Cardiovasc Sci, NIH, Bethesda, MD 20892 USA
[6] Cemer Corp, Kansas City, MO USA
[7] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[8] Johns Hopkins Univ, Div Gen Internal Med, Baltimore, MD USA
[9] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD USA
关键词
Electronic Health Records; Genomics; Knowledge representation; Data compression; CARE; SEQUENCE;
D O I
10.1016/j.jbi.2011.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The era of "Personalized Medicine," guided by individual molecular variation in DNA, RNA, expressed proteins and other forms of high volume molecular data brings new requirements and challenges to the design and implementation of Electronic Health Records (EHRs). In this article we describe the characteristics of biomolecular data that differentiate it from other classes of data commonly found in EHRs, enumerate a set of technical desiderata for its management in healthcare settings, and of er a candidate technical approach to its compact and efficient representation in operational systems. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 422
页数:4
相关论文
共 50 条
[31]   Challenges in data quality assurance for electronic health records [J].
Shabestari, Omid ;
Roudsari, Abdul .
Studies in Health Technology and Informatics, 2013, 183 :37-41
[32]   Continuous Security through Integration Testing in an Electronic Health Records System [J].
Purkayastha, Saptarshi ;
Goyal, Shreya ;
Phillips, Tyler ;
Wu, Huanmei ;
Haakenson, Brandon ;
Zou, Xukai .
2020 INTERNATIONAL CONFERENCE ON SOFTWARE SECURITY AND ASSURANCE (ICSSA 2020), 2020, :26-31
[33]   A Novel System Architecture for the National Integration of Electronic Health Records: A Semi-Centralized Approach [J].
AlJarullah, Asma ;
El-Masri, Samir .
JOURNAL OF MEDICAL SYSTEMS, 2013, 37 (04)
[34]   Federated Learning for Electronic Health Records [J].
Dang, Trung Kien ;
Lan, Xiang ;
Weng, Jianshu ;
Feng, Mengling .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
[35]   Electronic Health Records and Heart Failure [J].
Kao, David P. .
HEART FAILURE CLINICS, 2022, 18 (02) :201-211
[36]   Retrieving Clinical and Omic Data from Electronic Health Records [J].
Cabot, Chloe ;
Lelong, Romain ;
Grosjean, Julien ;
Soualmia, Lina F. ;
Darmoni, Stefan J. .
TRANSFORMING HEALTHCARE WITH THE INTERNET OF THINGS, 2016, 221 :115-115
[37]   Learning from heterogeneous temporal data in electronic health records [J].
Zhao, Jing ;
Papapetrou, Panagiotis ;
Asker, Lars ;
Bostrom, Henrik .
JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 65 :105-119
[38]   DensityTransfer: A Data Driven Approach for Imputing Electronic Health Records [J].
Wang, Fei ;
Zhou, Jiayu ;
Hu, Jianying .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :2763-2768
[39]   Detecting Systemic Data Quality Issues in Electronic Health Records [J].
Ta, Casey N. ;
Weng, Chunhua .
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 :383-387
[40]   Heimdall, a Computer Program for Electronic Health Records Data Visualization [J].
Martignene, Niels ;
Balcaen, Thibaut ;
Bouzille, Guillaume ;
Calafiore, Matthieu ;
Beuscart, Jean-Baptiste ;
Lamer, Antoine ;
Legrand, Bertrand ;
Ficheur, Gregoire ;
Chazard, Emmanuel .
DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 :247-251