Cauchy-Schwarz inequality in semi-inner product C*-modules via polar decomposition

被引:17
|
作者
Fujii, J. I. [2 ]
Fujii, M. [3 ]
Moslehian, M. S. [1 ]
Seo, Y. [4 ]
机构
[1] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, Mashhad 91775, Iran
[2] Osaka Kyoiku Univ, Dept Art & Sci Informat Sci, Osaka 5828582, Japan
[3] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
[4] Shibaura Inst Technol, Coll Engn, Minuma Ku, Saitama 3378570, Japan
关键词
Hilbert C*-module; Operator inequality; Operator geometric mean; Positive operator; Kantorovich inequality;
D O I
10.1016/j.jmaa.2012.04.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By virtue of the operator geometric mean and the polar decomposition, we present a new Cauchy-Schwarz inequality in the framework of semi-inner product C*-modules over unital C*-algebras and discuss the equality case. We also give several additive and multiplicative type reverses of it. As an application, we present a Kantorovich type inequality on a Hilbert C*-module. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:835 / 840
页数:6
相关论文
共 5 条
  • [1] OPERATOR INEQUALITIES ON HILBERT C*-MODULES VIA THE CAUCHY-SCHWARZ INEQUALITY
    Fujii, Jun Ichi
    Fujii, Masatoshi
    Seo, Yuki
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 295 - 315
  • [2] A treatment of the Cauchy-Schwarz inequality in C*-modules
    Arambasic, Ljiljana
    Bakic, Damir
    Moslehian, Mohammad Sal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 546 - 556
  • [3] Reverse Cauchy-Schwarz type inequalities in pre-inner product C*-modules
    Fujii, Jun-Ichi
    Fujii, Masatoshi
    Moslehian, Mohammad Sal
    Pecaric, Josip E.
    Seo, Yuki
    HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (03) : 393 - 409
  • [4] C*-module operators which satisfy the generalized Cauchy-Schwarz type inequality
    Zamani, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (04) : 644 - 654
  • [5] Buzano Inequality in Inner Product C*-modules via the Operator Geometric Mean
    Fujii, Jun Ichi
    Fujii, Masatoshi
    Seo, Yuki
    FILOMAT, 2015, 29 (08) : 1689 - 1694