Cauchy-Schwarz inequality in semi-inner product C*-modules via polar decomposition

被引:18
作者
Fujii, J. I. [2 ]
Fujii, M. [3 ]
Moslehian, M. S. [1 ]
Seo, Y. [4 ]
机构
[1] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, Mashhad 91775, Iran
[2] Osaka Kyoiku Univ, Dept Art & Sci Informat Sci, Osaka 5828582, Japan
[3] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
[4] Shibaura Inst Technol, Coll Engn, Minuma Ku, Saitama 3378570, Japan
关键词
Hilbert C*-module; Operator inequality; Operator geometric mean; Positive operator; Kantorovich inequality;
D O I
10.1016/j.jmaa.2012.04.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By virtue of the operator geometric mean and the polar decomposition, we present a new Cauchy-Schwarz inequality in the framework of semi-inner product C*-modules over unital C*-algebras and discuss the equality case. We also give several additive and multiplicative type reverses of it. As an application, we present a Kantorovich type inequality on a Hilbert C*-module. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:835 / 840
页数:6
相关论文
共 21 条
[1]  
Ando T., 1978, LECT NOTES
[2]  
[Anonymous], 2009, J INEQUAL PUR APPL M
[3]   A treatment of the Cauchy-Schwarz inequality in C*-modules [J].
Arambasic, Ljiljana ;
Bakic, Damir ;
Moslehian, Mohammad Sal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :546-556
[4]  
Dragomir S.S., 2003, J. Inequal. Pure Appl. Math., V4, P1
[5]  
DRAGOMIR SS, 2003, RGMIA RES REP COLL, V6
[6]  
Elezovic N, 2005, MATH INEQUAL APPL, V8, P223
[7]   OPERATOR-VALUED INNER PRODUCT AND OPERATOR INEQUALITIES [J].
Fujii, Jun Ichi .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02) :59-67
[8]  
Fujii JI, 2011, HOKKAIDO MATH J, V40, P393
[9]  
Fujii M., 1997, NIHONKAI MATH J, V8, P117
[10]  
Furuta T., 2005, Monographs in Inequalities, V1