Stability of the solutions of the Gross-Pitaevskii equation

被引:20
|
作者
Jackson, AD
Kavoulakis, GM
Lundh, E
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Lund Inst Technol, SE-22100 Lund, Sweden
[3] KTH, Dept Phys, SE-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.053617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the static and dynamic stability of the solutions of the Gross-Pitaevskii equation and demonstrate the intimate connection between them. All salient features related to dynamic stability are reflected systematically in static properties. We find, for example, the obvious result that static stability always implies dynamic stability and present a simple explanation of the fact that dynamic stability can exist even in the presence of static instability.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] GENERALIZED SOLUTIONS TO THE GROSS-PITAEVSKII EQUATION
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1487 - 1498
  • [2] Solutions of the Gross-Pitaevskii equation in two dimensions
    Lee, MD
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (13) : 3009 - 3017
  • [3] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352
  • [4] Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
    Rybin, AV
    Varzugin, GG
    Lindberg, M
    Timonen, J
    Bullough, RK
    PHYSICAL REVIEW E, 2000, 62 (05): : 6224 - 6228
  • [5] Dynamic study for numerical solutions of the Gross-Pitaevskii equation
    Department of Science, Liaoning Technical University, Fuxin 123000, China
    不详
    Jisuan Wuli, 2006, 4 (483-488):
  • [6] The Gross-Pitaevskii equation: Backlund transformations and admitted solutions
    Carillo, Sandra
    Zullo, Federico
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 503 - 512
  • [7] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [8] Stationary solutions of the Gross-Pitaevskii equation with linear counterpart
    D'Agosta, R
    Malomed, BA
    Presilla, C
    PHYSICS LETTERS A, 2000, 275 (5-6) : 424 - 434
  • [9] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761
  • [10] Asymptotic stability of the black soliton for the Gross-Pitaevskii equation
    Gravejat, Philippe
    Smets, Didier
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 305 - 353