A unified computational framework for single-cell data integration with optimal transport

被引:34
|
作者
Cao, Kai [1 ,2 ]
Gong, Qiyu [3 ]
Hong, Yiguang [4 ]
Wan, Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst, ILSC, NCMIS, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Inst Immunol, Fac Basic Med, Sch Med, Shanghai, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
OMICS;
D O I
10.1038/s41467-022-35094-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A benchmark of computational pipelines for single-cell histone modification data
    Félix Raimundo
    Pacôme Prompsy
    Jean-Philippe Vert
    Céline Vallot
    Genome Biology, 24
  • [42] A benchmark of computational pipelines for single-cell histone modification data
    Raimundo, Felix
    Prompsy, Pacome
    Vert, Jean-Philippe
    Vallot, Celine
    GENOME BIOLOGY, 2023, 24 (01)
  • [43] CellRank 2: unified fate mapping in multiview single-cell data
    Weiler, Philipp
    Lange, Marius
    Klein, Michal
    Pe'er, Dana
    Theis, Fabian
    NATURE METHODS, 2024, 21 (07) : 1196 - 1205
  • [44] Semi-supervised integration of single-cell transcriptomics data
    Andreatta, Massimo
    Herault, Leonard
    Gueguen, Paul
    Gfeller, David
    Berenstein, Ariel J.
    Carmona, Santiago J.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [45] Semi-supervised integration of single-cell transcriptomics data
    Massimo Andreatta
    Léonard Hérault
    Paul Gueguen
    David Gfeller
    Ariel J. Berenstein
    Santiago J. Carmona
    Nature Communications, 15
  • [46] Graph Neural Networks for Multimodal Single-Cell Data Integration
    Wen, Hongzhi
    Ding, Jiayuan
    Jin, Wei
    Wang, Yiqi
    Xie, Yuying
    Tang, Jiliang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4153 - 4163
  • [47] Machine Learning Approaches to Single-Cell Data Integration and Translation
    Uhler, Caroline
    Shivashankar, G., V
    PROCEEDINGS OF THE IEEE, 2022, 110 (05) : 557 - 576
  • [48] Fast, sensitive and accurate integration of single-cell data with Harmony
    Ilya Korsunsky
    Nghia Millard
    Jean Fan
    Kamil Slowikowski
    Fan Zhang
    Kevin Wei
    Yuriy Baglaenko
    Michael Brenner
    Po-ru Loh
    Soumya Raychaudhuri
    Nature Methods, 2019, 16 : 1289 - 1296
  • [49] Bi-order multimodal integration of single-cell data
    Jinzhuang Dou
    Shaoheng Liang
    Vakul Mohanty
    Qi Miao
    Yuefan Huang
    Qingnan Liang
    Xuesen Cheng
    Sangbae Kim
    Jongsu Choi
    Yumei Li
    Li Li
    May Daher
    Rafet Basar
    Katayoun Rezvani
    Rui Chen
    Ken Chen
    Genome Biology, 23
  • [50] Principled and interpretable alignability testing and integration of single-cell data
    Ma, Rong
    Sun, Eric D.
    Donoho, David
    Zou, James
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (10)