A unified computational framework for single-cell data integration with optimal transport

被引:34
|
作者
Cao, Kai [1 ,2 ]
Gong, Qiyu [3 ]
Hong, Yiguang [4 ]
Wan, Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst, ILSC, NCMIS, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Inst Immunol, Fac Basic Med, Sch Med, Shanghai, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
OMICS;
D O I
10.1038/s41467-022-35094-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A universal framework for single-cell multi-omics data integration with graph convolutional networks
    Gao, Hongli
    Zhang, Bin
    Liu, Long
    Li, Shan
    Gao, Xin
    Yu, Bin
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [32] MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data
    Argelaguet, Ricard
    Arnol, Damien
    Bredikhin, Danila
    Deloro, Yonatan
    Velten, Britta
    Marioni, John C.
    Stegle, Oliver
    GENOME BIOLOGY, 2020, 21 (01)
  • [33] Accurately Deciphering Novel Cell Type in Spatially Resolved Single-Cell Data Through Optimal Transport
    Luo, Mai
    Zeng, Yuansong
    Chen, Jianing
    Shangguan, Ningyuan
    Zhou, Wenhao
    Yang, Yuedong
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024, 2024, 14955 : 107 - 118
  • [34] Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes
    McCarthy, Davis J.
    Rostom, Raghd
    Huang, Yuanhua
    Kunz, Daniel J.
    Danecek, Petr
    Bonder, Marc Jan
    Hagai, Tzachi
    Lyu, Ruqian
    Wang, Wenyi
    Gaffney, Daniel J.
    Simons, Benjamin D.
    Stegle, Oliver
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (04) : 414 - +
  • [35] Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes
    Davis J. McCarthy
    Raghd Rostom
    Yuanhua Huang
    Daniel J. Kunz
    Petr Danecek
    Marc Jan Bonder
    Tzachi Hagai
    Ruqian Lyu
    Wenyi Wang
    Daniel J. Gaffney
    Benjamin D. Simons
    Oliver Stegle
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 414 - 421
  • [36] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stanojevic, Stefan
    Li, Yijun
    Ristivojevic, Aleksandar
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 836 - 849
  • [37] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stefan Stanojevic
    Yijun Li
    Aleksandar Ristivojevic
    Lana X.Garmire
    Genomics,Proteomics & Bioinformatics, 2022, (05) : 836 - 849
  • [38] Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data
    Wolock, Samuel L.
    Lopez, Romain
    Klein, Allon M.
    CELL SYSTEMS, 2019, 8 (04) : 281 - +
  • [39] Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment
    Kuznetsov, Ivan A.
    Berlew, Erin E.
    Glantz, Spencer T.
    Hannanta-Anan, Pimkhuan
    Chow, Brian Y.
    CELL REPORTS METHODS, 2022, 2 (07):
  • [40] Benchmarking computational methods for single-cell chromatin data analysis
    Luo, Siyuan
    Germain, Pierre-Luc
    Robinson, Mark D.
    von Meyenn, Ferdinand
    GENOME BIOLOGY, 2024, 25 (01):