A unified computational framework for single-cell data integration with optimal transport

被引:34
|
作者
Cao, Kai [1 ,2 ]
Gong, Qiyu [3 ]
Hong, Yiguang [4 ]
Wan, Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst, ILSC, NCMIS, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Inst Immunol, Fac Basic Med, Sch Med, Shanghai, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
OMICS;
D O I
10.1038/s41467-022-35094-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data
    Wang, Chloe X.
    Zhang, Lin
    Wang, Bo
    GENOME BIOLOGY, 2022, 23 (01)
  • [22] One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data
    Chloe X. Wang
    Lin Zhang
    Bo Wang
    Genome Biology, 23
  • [23] scEGOT: single-cell trajectory inference framework based on entropic Gaussian mixture optimal transport
    Yachimura, Toshiaki
    Wang, Hanbo
    Imoto, Yusuke
    Yoshida, Momoko
    Tasaki, Sohei
    Kojima, Yoji
    Yabuta, Yukihiro
    Saitou, Mitinori
    Hiraoka, Yasuaki
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [24] Computational framework decomposes and annotates single-cell and spatial omics
    Nature Biotechnology, 2023, 41 : 1396 - 1397
  • [25] Computational framework decomposes and annotates single-cell and spatial omics
    Nitzan, Mor
    Regev, Aviv
    NATURE BIOTECHNOLOGY, 2023, 41 (10) : 1396 - 1397
  • [26] Computational methods for the integrative analysis of single-cell data
    Forcato, Mattia
    Romano, Oriana
    Bicciato, Silvio
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03) : 20 - 29
  • [27] Integration of multi-modal single-cell data
    Lee, Michelle Y. Y.
    Li, Mingyao
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 190 - 191
  • [28] Orthogonal multimodality integration and clustering in single-cell data
    Liu, Yufang
    Chen, Yongkai
    Lu, Haoran
    Zhong, Wenxuan
    Yuan, Guo-Cheng
    Ma, Ping
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [29] Integration of multi-modal single-cell data
    Michelle Y. Y. Lee
    Mingyao Li
    Nature Biotechnology, 2024, 42 : 190 - 191
  • [30] MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
    Ricard Argelaguet
    Damien Arnol
    Danila Bredikhin
    Yonatan Deloro
    Britta Velten
    John C. Marioni
    Oliver Stegle
    Genome Biology, 21