A unified computational framework for single-cell data integration with optimal transport

被引:34
|
作者
Cao, Kai [1 ,2 ]
Gong, Qiyu [3 ]
Hong, Yiguang [4 ]
Wan, Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst, ILSC, NCMIS, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Inst Immunol, Fac Basic Med, Sch Med, Shanghai, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
OMICS;
D O I
10.1038/s41467-022-35094-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A unified computational framework for single-cell data integration with optimal transport
    Kai Cao
    Qiyu Gong
    Yiguang Hong
    Lin Wan
    Nature Communications, 13
  • [2] Computational principles and challenges in single-cell data integration
    Argelaguet, Ricard
    Cuomo, Anna S. E.
    Stegle, Oliver
    Marioni, John C.
    NATURE BIOTECHNOLOGY, 2021, 39 (10) : 1202 - 1215
  • [3] Computational principles and challenges in single-cell data integration
    Ricard Argelaguet
    Anna S. E. Cuomo
    Oliver Stegle
    John C. Marioni
    Nature Biotechnology, 2021, 39 : 1202 - 1215
  • [4] A Quantitative Computational Framework for Allopolyploid Single-Cell Data Integration and Core Gene Ranking in Development
    Wang, Meiyue
    Li, Zijuan
    Wang, Haoyu
    Zhao, Junwei
    Zhang, Yuyun
    Lin, Kande
    Zheng, Shusong
    Feng, Yilong
    Zhang, Yu'e
    Teng, Wan
    Tong, Yiping
    Zhang, Wenli
    Xue, Yongbiao
    Mao, Hude
    Li, Hao
    Zhang, Bo
    Rasheed, Awais
    Bhavani, Sridhar
    Liu, Chenghong
    Ling, Hong-Qing
    Hu, Yue-Qing
    Zhang, Yijing
    MOLECULAR BIOLOGY AND EVOLUTION, 2024, 41 (09)
  • [5] Transmorph: a unifying computational framework for modular single-cell RNA-seq data integration
    Fouche, Aziz
    Chadoutaud, Loic
    Delattre, Olivier
    Zinovyev, Andrei
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (03)
  • [6] Computational Methods for Single-Cell Imaging and Omics Data Integration
    Watson, Ebony Rose
    Taherian Fard, Atefeh
    Mar, Jessica Cara
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [7] Optimal transport for single-cell genomics
    Tang, Lin
    NATURE METHODS, 2025, 22 (03) : 452 - 452
  • [8] Gene trajectory inference for single-cell data by optimal transport metrics
    Qu, Rihao
    Cheng, Xiuyuan
    Sefik, Esen
    Stanley, Jay S.
    Landa, Boris
    Strino, Francesco
    Platt, Sarah
    Garritano, James
    Odell, Ian D.
    Coifman, Ronald
    Flavell, Richard A.
    Myung, Peggy
    Kluger, Yuval
    NATURE BIOTECHNOLOGY, 2025, 43 (02) : 258 - 268
  • [9] Approaches for the integration of big data in translational medicine: single-cell and computational methods
    Amirmahani, Farzane
    Ebrahimi, Nasim
    Molaei, Fatemeh
    Faghihkhorasani, Ferdos
    Goharrizi, Kiarash Jamshidi
    Mirtaghi, Seyede Masoumeh
    Borjian-Boroujeni, Marziyeh
    Hamblin, Michael R.
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2021, 1493 (01) : 3 - 28
  • [10] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +