On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic

被引:65
作者
Backman, John [1 ]
Schmeisser, Lauren [2 ,12 ]
Virkkula, Aki [1 ,3 ,4 ]
Ogren, John A. [2 ,5 ]
Asmi, Eija [1 ]
Starkweather, Sandra [2 ,5 ]
Sharma, Sangeeta [6 ]
Eleftheriadis, Konstantinos [7 ]
Uttal, Taneil [5 ]
Jefferson, Anne [2 ]
Bergin, Michael [8 ]
Makshtas, Alexander [9 ]
Tunved, Peter [10 ]
Fiebig, Markus [11 ]
机构
[1] Finnish Meteorol Inst, Atmospher Composit Res, Helsinki, Finland
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Univ Helsinki, Dept Phys, Helsinki, Finland
[4] Nanjing Univ, Joint Int Res Lab Atmospher & Earth Syst Sci, Nanjing, Jiangsu, Peoples R China
[5] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO USA
[6] Environm & Climate Change Canada, Climate Res Div, Downsview, ON, Canada
[7] NCSR Demokritos, Inst Nucl & Radiol Sci & Technol, Environm Radioact Lab, Energy & Safety, Athens, Greece
[8] Duke Univ, Civil & Environm Engn, Durham, NC USA
[9] Russian Fed Serv Hydrometeorol & Environm Monitor, Arctic & Antarctic Res Inst, St Petersburg, Russia
[10] Stockholm Univ, Dept Environm Sci & Analyt Chem, Stockholm, Sweden
[11] NILU Norsk Inst Luftforskning, Dept Atmospher & Climate Res ATMOS, Kjeller, Norway
[12] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
基金
芬兰科学院;
关键词
AEROSOL LIGHT-ABSORPTION; BLACK-CARBON; CORRECTION ALGORITHMS; ATMOSPHERIC AEROSOLS; SPECTRAL ALBEDO; CLIMATE-CHANGE; AMPLIFICATION; VARIABILITY; PARTICLES; SNOW;
D O I
10.5194/amt-10-5039-2017
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
引用
收藏
页码:5039 / 5062
页数:24
相关论文
共 54 条
[1]   Determining aerosol radiative properties using the TSI 3563 integrating nephelometer [J].
Anderson, TL ;
Ogren, JA .
AEROSOL SCIENCE AND TECHNOLOGY, 1998, 29 (01) :57-69
[2]   Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols [J].
Andreae, M. O. ;
Gelencser, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3131-3148
[3]   Towards aerosol light-absorption measurements with a 7-wavelength Aethalometer:: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer [J].
Arnott, WP ;
Hamasha, K ;
Moosmüller, H ;
Sheridan, PJ ;
Ogren, JA .
AEROSOL SCIENCE AND TECHNOLOGY, 2005, 39 (01) :17-29
[4]   Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic [J].
Asmi, E. ;
Kondratyev, V. ;
Brus, D. ;
Laurila, T. ;
Lihavainen, H. ;
Backman, J. ;
Vakkari, V. ;
Aurela, M. ;
Hatakka, J. ;
Viisanen, Y. ;
Uttal, T. ;
Ivakhov, V. ;
Makshtas, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) :1271-1287
[5]   Differences in aerosol absorption Angstrom exponents between correction algorithms for a particle soot absorption photometer measured on the South African Highveld [J].
Backman, J. ;
Virkkula, A. ;
Vakkari, V. ;
Beukes, J. P. ;
Van Zyl, P. G. ;
Josipovic, M. ;
Piketh, S. ;
Tiitta, P. ;
Chiloane, K. ;
Petaja, T. ;
Kulmala, M. ;
Laakso, L. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (12) :4285-4298
[6]  
Backman J., 2017, TIME SERIES AEROSOL
[7]   Spectral absorption properties of atmospheric aerosols [J].
Bergstrom, R. W. ;
Pilewskie, P. ;
Russell, P. B. ;
Redemann, J. ;
Bond, T. C. ;
Quinn, P. K. ;
Sierau, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) :5937-5943
[8]   AEROSOL MEASUREMENTS AT 4 BACKGROUND SITES [J].
BODHAINE, BA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC15) :753-768
[10]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552