An envelope for the spectrum of a matrix

被引:7
作者
Psarrakos, Panayiotis J. [1 ]
Tsatsomeros, Michael J. [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] Washington State Univ, Dept Math, Pullman, WA 99164 USA
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 01期
关键词
Eigenvalue bounds; Numerical range; Cubic curve; SKEW-SYMMETRIC MATRICES; NUMERICAL RANGE; INEQUALITY;
D O I
10.2478/s11533-011-0111-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study an envelope-type region E >(A) in the complex plane that contains the eigenvalues of a given nxn complex matrix A. E >(A) is the intersection of an infinite number of regions defined by cubic curves. The notion and method of construction of E >(A) extend the notion of the numerical range of A, F(A), which is known to be an intersection of an infinite number of half-planes; as a consequence, E >(A) is contained in F(A) and represents an improvement in localizing the spectrum of A.
引用
收藏
页码:292 / 302
页数:11
相关论文
共 10 条
[1]  
Adam M, 2006, ELECTRON J LINEAR AL, V15, P239
[2]  
[Anonymous], 1991, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[3]  
[Anonymous], 2006, Elliptic Curves
[4]   On flat portions on the boundary of the numerical range [J].
Brown, ES ;
Spitkovsky, IA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 :75-109
[5]   NUMERICAL DETERMINATION OF FIELD OF VALUES OF A GENERAL COMPLEX MATRIX [J].
JOHNSON, CR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) :595-602
[6]  
LEVINGER BW, 1970, NOT AM MATH SOC, V17, P260
[7]   Almost skew-symmetric matrices [J].
McDonald, JJ ;
Psarrakos, PJ ;
Tsatsomeros, MJ .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) :269-288
[8]   Bounds for Levinger's function of nonnegative almost skew-symmetric matrices [J].
Psarrakos, Panayiotis J. ;
Tsatsomeros, Michael J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) :759-772
[9]   The block numerical range of an n x n block operator matrix [J].
Tretter, C ;
Wagenhofer, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (04) :1003-1017
[10]  
Tretter C., 2008, SPECTRAL THEORY BLOC, DOI DOI 10.1142/P493