Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas

被引:62
作者
De-La-Pena, Clelia [1 ]
Rangel-Cano, Alicia [1 ]
Alvarez-Venegas, Raul [1 ]
机构
[1] Ctr Invest & Estudios Avanzados, Dept Genet Engn, Unidad Irapuato, Irapuato 36821, Gto, Mexico
关键词
SYSTEMIC ACQUIRED-RESISTANCE; SET-DOMAIN PROTEINS; JASMONIC ACID; HISTONE METHYLTRANSFERASE; TRANSCRIPTION FACTOR; SIGNALING PATHWAYS; PLANT DEFENSE; SALICYLIC-ACID; CROSS-TALK; THALIANA;
D O I
10.1111/j.1364-3703.2011.00757.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes.
引用
收藏
页码:388 / 398
页数:11
相关论文
共 47 条
[1]   Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization [J].
Abad, LR ;
DUrzo, MP ;
Liu, D ;
Narasimhan, ML ;
Reuveni, M ;
Zhu, JK ;
Niu, XM ;
Singh, NK ;
Hasegawa, PM ;
Bressan, RA .
PLANT SCIENCE, 1996, 118 (01) :11-23
[2]   SET-domain proteins of the Su(var)3-9, E(z) and trithorax families [J].
Alvarez-Venegas, R ;
Avramova, Z .
GENE, 2002, 285 (1-2) :25-37
[3]   The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes [J].
Alvarez-Venegas, R ;
Sadder, M ;
Hlavacka, A ;
Baluska, F ;
Xia, YN ;
Lu, GQ ;
Firsov, A ;
Sarath, G ;
Moriyama, H ;
Dubrovsky, JG ;
Avramova, Z .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :6049-6054
[4]   Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants [J].
Alvarez-Venegas, R ;
Avramova, Z .
NUCLEIC ACIDS RESEARCH, 2005, 33 (16) :5199-5207
[5]   Epigenetic control of a transcription factor at the cross section of two antagonistic pathways [J].
Alvarez-Venegas, Raul ;
Al Abdallat, Ayed ;
Guo, Ming ;
Alfano, James R. ;
Avramova, Zoya .
EPIGENETICS, 2007, 2 (02) :106-113
[6]   The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes [J].
Baumbusch, LO ;
Thorstensen, T ;
Krauss, V ;
Fischer, A ;
Naumann, K ;
Assalkhou, R ;
Schulz, I ;
Reuter, G ;
Aalen, RB .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4319-4333
[7]   Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi [J].
Berr, Alexandre ;
McCallum, Emily J. ;
Alioua, Abdelmalek ;
Heintz, Dimitri ;
Heitz, Thierry ;
Shen, Wen-Hui .
PLANT PHYSIOLOGY, 2010, 154 (03) :1403-1414
[8]   Epigenetic control of plant stress response [J].
Boyko, Alex ;
Kovalchuk, Igor .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2008, 49 (01) :61-72
[9]   Transcriptional Control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis Development [J].
Cazzonelli, Christopher I. ;
Roberts, Andrea C. ;
Carmody, Melanie E. ;
Pogson, Barry J. .
MOLECULAR PLANT, 2010, 3 (01) :174-191
[10]   Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8 [J].
Cazzonelli, Christopher I. ;
Cuttriss, Abby J. ;
Cossetto, Susan B. ;
Pye, William ;
Crisp, Peter ;
Whelan, Jim ;
Finnegan, E. Jean ;
Turnbull, Colin ;
Pogson, Barry J. .
PLANT CELL, 2009, 21 (01) :39-53