Native Halotolerant Plant Growth Promoting Bacterial Strains can Ameliorate Salinity Stress on Tomato Plants under Field Conditions

被引:0
|
作者
Aslam, Hina [1 ]
Ahmad, Sajid Rashid [1 ]
Anjum, Tehmina [2 ]
Akram, Waheed [2 ,3 ]
机构
[1] Univ Punjab, Coll Earth & Environm Sci, Lahore, Pakistan
[2] Univ Punjab, Inst Agr Sci, Lahore, Punjab, Pakistan
[3] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China
关键词
Salinity tolerance; Reactive oxygen species; Tomato; Biochemical mechanisms; LIPID-PEROXIDATION; CARRIZO CITRANGE; DROUGHT STRESS; SEEDLINGS; ENZYME; RHIZOBACTERIA; RESISTANCE; L;
D O I
10.17957/IJAB/15.0491
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Salinity effects plant growth and productivity in many areas of the world. In this research work native halotolerant plant growth promoting bacteria were used to ameliorate salinity stress on tomato plants under greenhouse and field conditions. Isolation of bacterial strains from saline soil was implied as main strategy for better adaptations of bacterial strains under salinity stress conditions. In greenhouse experiment, inoculation of the screened halotolerant bacterial strains increased shoot length of tomato plants ranging between 7.2 and 63.6% and dry biomass ranging between 5.8 and 48.6%, as compared with the control plants grown under varying salinity stress (100 and 200 mM NaCl) conditions. Based on greenhouse evaluations, two best performing plant growth promoting halotolerant strains i.e., A12 and A20 were used in field experiments. Field experiments were performed in salinity affected land patches present in agricultural fields of University of the Punjab. Bacteria were provided in the form of sugarcane pressmud based formulations. Both of these strains (A12 and A20) significantly increased shoot length (27.3 and 21.8%) and yield of tomato plants (24.2 and17.3%) respectively grown under natural salinized condition. The strains were identified by16S rRNA gene sequencing as Bacillus megaterium strain A12 and Pseudomonas putida strain A20. Bacillus megaterium strain A12 was used to elucidate mechanisms beneath salinity tolerance in tomato plants based on its superior performance under field conditions. Symbiosis of this strain significantly reduced endogenous ethylene production and increased water use efficacy and production of different enzymes (APX, CAT and SOD) involved in destruction of reactive oxygen species inside tomato plants grown under saline stress conditions. In summary, this study indicates that these halotolerant bacterial strain can be used in conventional agricultural system of Pakistan to rescue growth of plants under salinity stress conditions. (c) 2018 Friends Science Publishers
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [1] Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress
    Fatima, Tahmish
    Mishra, Isha
    Verma, Renu
    Arora, Naveen Kumar
    3 BIOTECH, 2020, 10 (08)
  • [2] Halotolerant Microbial Consortia for Sustainable Mitigation of Salinity Stress, Growth Promotion, and Mineral Uptake in Tomato Plants and Soil Nutrient Enrichment
    Kapadia, Chintan
    Sayyed, R. Z.
    El Enshasy, Hesham Ali
    Vaidya, Harihar
    Sharma, Deepshika
    Patel, Nafisa
    Malek, Roslinda Abd
    Syed, Asad
    Elgorban, Abdallah M.
    Ahmad, Khurshid
    Zuan, Ali Tan Kee
    SUSTAINABILITY, 2021, 13 (15)
  • [3] Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress
    Masmoudi, Fatma
    Tounsi, Slim
    Dunlap, Christopher A.
    Trigui, Mohamed
    PLANT CELL REPORTS, 2021, 40 (07) : 1199 - 1213
  • [4] Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants
    Kumar, Akhilesh
    Singh, Saurabh
    Gaurav, Anand Kumar
    Srivastava, Sudhakar
    Verma, Jay Prakash
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [5] Plant growth-promoting bacterial consortia improved the physiology and growth of maize by regulating osmolytes and antioxidants balance under salt-affected field conditions
    Afzal, Ali
    Khan, Muhammad Yahya
    Zahir, Zahir Ahmad
    Asghar, Hafiz Naeem
    Muhmood, Atif
    Rashid, Muhammad
    Aslam, Zeeshan
    Javed, Syed Ayyaz
    Nadeem, Sajid Mahmood
    HELIYON, 2023, 9 (07)
  • [6] Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review
    Singh, Vipin Kumar
    Singh, Amit Kishore
    Singh, Prem Pratap
    Kumar, Ajay
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 267 : 129 - 140
  • [7] Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions
    Khan, Muhammad Yahya
    Nadeem, Sajid Mahmood
    Sohaib, Muhammad
    Waqas, Muhammad Rashid
    Alotaibi, Fahad
    Ali, Liaqat
    Zahir, Zahir Ahmad
    Al-Barakah, Fahad N. I.
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [8] Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria
    Rojas-Pirela, Maura
    Carillo, Petronia
    Larez-Velasquez, Cristobal
    Romanazzi, Gianfranco
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [9] Plant growth promoting bacteria for combating salinity stress in plants - Recent developments and prospects: A review
    Mishra, Priya
    Mishra, Jitendra
    Arora, Naveen Kumar
    MICROBIOLOGICAL RESEARCH, 2021, 252
  • [10] Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions
    Khanghahi, Mohammad Yaghoubi
    AbdElgawad, Hamada
    Verbruggen, Erik
    Korany, Shereen Magdy
    Alsherif, Emad A.
    Beemster, Gerrit T. S.
    Crecchio, Carmine
    PHYSIOLOGIA PLANTARUM, 2022, 174 (06)