An Effective Schmidt's Subspace Theorem for Projective Varieties Over Function Fields

被引:7
作者
Ru, Min [2 ]
Wang, Julie Tzu-Yueh [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
HOLOMORPHIC-CURVES;
D O I
10.1093/imrn/rnr042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deduce an effective version of Schmidt's subspace theorem on a smooth projective variety X subset of P-N over a function field of characteristic zero for divisors of chi coming from hypersurfaces in P-N.
引用
收藏
页码:651 / 684
页数:34
相关论文
共 26 条
[1]   An effective Schmidt's subspace theorem for non-linear forms over function fields [J].
An, Ta Thi Hoai ;
Wang, Julie Tzu-Yueh .
JOURNAL OF NUMBER THEORY, 2007, 125 (01) :210-228
[2]   Ideal membership in polynomial rings over the integers [J].
Aschenbrenner, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (02) :407-441
[3]  
BROWNAWELL WD, 1989, LECT NOTES MATH, V1380, P1
[4]  
Catanese Fabrizio, 1992, Journal of Algebraic Geometry, V1, P561
[5]   UPPER BOUND OF THE HILBERT FUNCTION AND ITS CONSEQUENCES FOR ALGEBRAIC INTERPOLATION [J].
CHARDIN, M .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (03) :305-318
[6]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[7]  
Dethloff G, 2011, HOUSTON J MATH, V37, P79
[8]   A generalization of the Subspace Theorem with polynomials of higher degree [J].
Evertse, Jan-Hendrik ;
Ferretti, Roberto G. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :175-+
[9]  
Evertse JH, 2002, INT MATH RES NOTICES, V2002, P1295
[10]   DIOPHANTINE APPROXIMATIONS ON PROJECTIVE SPACES [J].
FALTINGS, G ;
WUSTHOLZ, G .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :109-138