Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

被引:74
作者
Farooq, Adnan [1 ]
Jalal, Ahmad [1 ]
Kamal, Shaharyar [2 ]
机构
[1] Kyung Hee Univ, Dept Biomed Engn, Yongin 446701, Gyeonggi Do, South Korea
[2] Kyung Hee Univ, Sch Elect & Informat, Yongin 446701, Gyeonggi Do, South Korea
关键词
Human silhouette tracking; body skin joints features; activity recognition; self-organized maps; human activity recognition system; VIDEO; SYSTEM; ALGORITHM;
D O I
10.3837/tiis.2015.05.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.
引用
收藏
页码:1856 / 1869
页数:14
相关论文
empty
未找到相关数据