The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries

被引:35
|
作者
Ke, Qiaomin [1 ,2 ,3 ,4 ]
Li, Xin [5 ]
Guo, Jian [1 ,2 ,3 ]
Cao, Wenjiong [1 ,2 ,3 ]
Wang, Yiwei [1 ,2 ,3 ,4 ]
Jiang, Fangming [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
[2] CAS Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] State Grid Elect Power Res Inst, Nanjing 211106, Jiangsu, Peoples R China
关键词
Lithium-ion battery; Thermal runaway propagation; Thermal management; Liquid cooling; SAFETY; ABUSE; HYBRID; SYSTEM; MODULE; CELLS; POWER;
D O I
10.1016/j.est.2022.104063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal runaway (TR) of an lithium-ion battery pack is investigated under laboratory conditions. The experi-mental battery pack consists of 10 18,650-type lithium-ion batteries connected in parallel and with a serpentine channel liquid-cooling thermal management system (TMS). The effect of the applied liquid-cooling TMS with different coolant flow rates (0 L/h, 32 L/h, 64 L/h and 96 L/h) on the TR propagation in the battery pack is analyzed, and the results indicate that the TMS is capable of preventing TR propagation. It is examined the eventual relation between TR prevention and the flow rate. The rate of TR in the batteries is almost random for lower values of the coolant flow rate (0 L/h, 32 L/h and 64 L/h), but for the coolant flow rate of 96 L/h, TR propagation can be effectively prevented. It is also found that the high-temperature electrolyte ejected from the positive side of the TR battery can rapidly spread to the adjacent batteries and trigger instantly their own TR. This is the leading mechanism yielding the TR propagation in the battery pack. Heat conduction and radiation, especially when the positive sides of the batteries are largely covered by the current connectors, play a minor role in the TR propagation. These findings may prove useful in designing lithium-ion battery packs with appropriate TMS strategies.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Thermal Runaway Propagation Characteristics of Lithium-Ion Batteries with Different Cathode Materials: A Comparative Study
    Li, Yitong
    Wang, Huaibin
    Wang, Shilin
    Xu, Lejun
    Li, Yang
    Sun, Junli
    Gao, Yang
    FIRE TECHNOLOGY, 2025,
  • [22] Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire
    Wang, Gongquan
    Ping, Ping
    Zhang, Yue
    Zhao, Hengle
    Lv, Hongpeng
    Gao, Xinzeng
    Gao, Wei
    Kong, Depeng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 175 : 524 - 540
  • [23] Trifunctional composite thermal barrier mitigates the thermal runaway propagation of large-format prismatic lithium-ion batteries
    Li, Ruirui
    Liu, Zhihao
    Zheng, Siqi
    Xu, Chengshan
    Sun, Jieyu
    Chen, Siqi
    Wang, Huaibin
    Lu, Languang
    Deng, Tao
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [24] Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway
    Mohammed, Abdul Haq
    Esmaeeli, Roja
    Aliniagerdroudbari, Haniph
    Alhadri, Muapper
    Hashemi, Seyed Reza
    Nadkarni, Gopal
    Farhad, Siamak
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [25] Thermal management of lithium-ion batteries based on the coupling of liquid cooling and composite phase change materials
    Dang, Yanhui
    Zou, Yongkang
    Song, Yang
    Li, Bing
    Du, Xueping
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025, 22 (03) : 522 - 535
  • [26] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [27] Optimization Methodology for Lithium-Ion Battery Temperature Sensor Placement Based on Thermal Management and Thermal Runaway Requirement
    Wang, Jing
    Hu, Donghai
    Shen, Huaping
    Yang, Tao
    Wang, Yuteng
    ICMAE 2020: 2020 11TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING, 2020, : 254 - 259
  • [28] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [29] A review on thermal management of lithium-ion batteries for electric vehicles
    Zhang, Xinghui
    Li, Zhao
    Luo, Lingai
    Fan, Yilin
    Du, Zhengyu
    ENERGY, 2022, 238
  • [30] Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries
    Abada, Sara
    Petit, Martin
    Lecocq, Amandine
    Marlair, Guy
    Sauvant-Moynot, Valerie
    Huet, Francois
    JOURNAL OF POWER SOURCES, 2018, 399 : 264 - 273