The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries

被引:35
|
作者
Ke, Qiaomin [1 ,2 ,3 ,4 ]
Li, Xin [5 ]
Guo, Jian [1 ,2 ,3 ]
Cao, Wenjiong [1 ,2 ,3 ]
Wang, Yiwei [1 ,2 ,3 ,4 ]
Jiang, Fangming [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
[2] CAS Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] State Grid Elect Power Res Inst, Nanjing 211106, Jiangsu, Peoples R China
关键词
Lithium-ion battery; Thermal runaway propagation; Thermal management; Liquid cooling; SAFETY; ABUSE; HYBRID; SYSTEM; MODULE; CELLS; POWER;
D O I
10.1016/j.est.2022.104063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal runaway (TR) of an lithium-ion battery pack is investigated under laboratory conditions. The experi-mental battery pack consists of 10 18,650-type lithium-ion batteries connected in parallel and with a serpentine channel liquid-cooling thermal management system (TMS). The effect of the applied liquid-cooling TMS with different coolant flow rates (0 L/h, 32 L/h, 64 L/h and 96 L/h) on the TR propagation in the battery pack is analyzed, and the results indicate that the TMS is capable of preventing TR propagation. It is examined the eventual relation between TR prevention and the flow rate. The rate of TR in the batteries is almost random for lower values of the coolant flow rate (0 L/h, 32 L/h and 64 L/h), but for the coolant flow rate of 96 L/h, TR propagation can be effectively prevented. It is also found that the high-temperature electrolyte ejected from the positive side of the TR battery can rapidly spread to the adjacent batteries and trigger instantly their own TR. This is the leading mechanism yielding the TR propagation in the battery pack. Heat conduction and radiation, especially when the positive sides of the batteries are largely covered by the current connectors, play a minor role in the TR propagation. These findings may prove useful in designing lithium-ion battery packs with appropriate TMS strategies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [2] Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules
    Liu, Tong
    Tao, Changfa
    Wang, Xishi
    APPLIED ENERGY, 2020, 267
  • [3] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Wang, Zhirong
    Mao, Ning
    Jiang, Fengwei
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 140 (06) : 2849 - 2863
  • [4] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Zhirong Wang
    Ning Mao
    Fengwei Jiang
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 2849 - 2863
  • [5] Mitigating thermal runaway propagation for lithium-ion batteries by a novel integrated liquid cooling/aerogel strategies
    Lyu, Peizhao
    Chen, Guohe
    Liu, Xinjian
    Li, Menghan
    Rao, Zhonghao
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [6] Progress on thermal runaway propagation characteristics and prevention strategies of lithium-ion batteries
    Ma, Ruixin
    Liu, Jizhen
    Wang, Shuangfeng
    Rao, Zhonghao
    Cai, Yang
    Wu, Weixiong
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (23): : 2991 - 3004
  • [7] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [8] Effect of flame heating on thermal runaway propagation of lithium-ion batteries in confined space
    Zhang, Yue
    Zhao, Hengle
    Wang, Gongquan
    Gao, Xinzeng
    Ping, Ping
    Kong, Depeng
    Yin, Xiaokang
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [9] Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network
    Wang, Gongquan
    Kong, Depeng
    Ping, Ping
    He, Xiaoqin
    Lv, Hongpeng
    Zhao, Hengle
    Hong, Wanru
    APPLIED ENERGY, 2023, 334
  • [10] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66