Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century

被引:67
作者
Smedsrud, Lars H. [1 ,2 ]
Muilwijk, Morven [1 ,2 ]
Brakstad, Ailin [1 ,2 ]
Madonna, Erica [1 ,2 ]
Lauvset, Siv K. [2 ,3 ]
Spensberger, Clemens [1 ,2 ]
Born, Andreas [2 ,4 ]
Eldevik, Tor [1 ,2 ]
Drange, Helge [1 ,2 ]
Jeansson, Emil [2 ,3 ]
Li, Camille [1 ,2 ]
Olsen, Are [1 ,2 ]
Skagseth, Oystein [2 ,5 ]
Slater, Donald A. [6 ,7 ]
Straneo, Fiamma [7 ]
Vage, Kjetil [1 ,2 ]
Arthun, Marius [1 ,2 ]
机构
[1] Univ Bergen, Inst Geophys, Bergen, Norway
[2] Bjerknes Ctr Climate Res, Bergen, Norway
[3] NORCE Norwegian Res Ctr, Bergen, Norway
[4] Univ Bergen, Dept Earth Sci, Bergen, Norway
[5] Inst Marine Res, Bergen, Norway
[6] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland
[7] UCSD, Scripps Inst Oceanog, La Jolla, CA USA
关键词
Nordic Seas; Arctic Ocean; heat loss; Atlantic water; Greenland melting; CO2; uptake; MERIDIONAL OVERTURNING CIRCULATION; WATER MASS TRANSFORMATION; GREENLAND-SCOTLAND RIDGE; SUBPOLAR NORTH-ATLANTIC; OPEN-OCEAN CONVECTION; COLD-AIR OUTBREAKS; INTERANNUAL VARIABILITY; BJERKNES COMPENSATION; TRANSPORT VARIABILITY; VOLUME VARIABILITY;
D O I
10.1029/2020RG000725
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Poleward ocean heat transport is a key process in the earth system. We detail and review the northward Atlantic Water (AW) flow, Arctic Ocean heat transport, and heat loss to the atmosphere since 1900 in relation to sea ice cover. Our synthesis is largely based on a sea ice-ocean model forced by a reanalysis atmosphere (1900-2018) corroborated by a comprehensive hydrographic database (1950-), AW inflow observations (1996-), and other long-term time series of sea ice extent (1900-), glacier retreat (1984-), and Barents Sea hydrography (1900-). The Arctic Ocean, including the Nordic and Barents Seas, has warmed since the 1970s. This warming is congruent with increased ocean heat transport and sea ice loss and has contributed to the retreat of marine-terminating glaciers on Greenland. Heat loss to the atmosphere is largest in the Nordic Seas (60% of total) with large variability linked to the frequency of Cold Air Outbreaks and cyclones in the region, but there is no long-term statistically significant trend. Heat loss from the Barents Sea (similar to 30%) and Arctic seas farther north (similar to 10%) is overall smaller, but exhibit large positive trends. The AW inflow, total heat loss to the atmosphere, and dense outflow have all increased since 1900. These are consistently related through theoretical scaling, but the AW inflow increase is also wind-driven. The Arctic Ocean CO2 uptake has increased by similar to 30% over the last century-consistent with Arctic sea ice loss allowing stronger air-sea interaction and is similar to 8% of the global uptake.
引用
收藏
页数:36
相关论文
共 215 条
[81]   Nordic Seas Hydrography in the Context of Arctic and North Atlantic Ocean Dynamics [J].
Kenigson, J. S. ;
Timmermans, M-L .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2021, 51 (01) :101-114
[82]   Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat [J].
King, Michalea D. ;
Howat, Ian M. ;
Candela, Salvatore G. ;
Noh, Myoung J. ;
Jeong, Seongsu ;
Noel, Brice P. Y. ;
van den Broeke, Michiel R. ;
Wouters, Bert ;
Negrete, Adelaide .
COMMUNICATIONS EARTH & ENVIRONMENT, 2020, 1 (01)
[83]   A carbon budget for the Barents Sea [J].
Kivimae, Caroline ;
Bellerby, Richard G. J. ;
Fransson, Agneta ;
Reigstad, Marit ;
Johannessen, Truls .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2010, 57 (12) :1532-1542
[84]   Marine cold-air outbreaks in the North Atlantic: temporal distribution and associations with large-scale atmospheric circulation [J].
Kolstad, Erik W. ;
Bracegirdle, Thomas J. ;
Seierstad, Ivar A. .
CLIMATE DYNAMICS, 2009, 33 (2-3) :187-197
[85]   Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline [J].
L'Heureux, Michelle L. ;
Kumar, Arun ;
Bell, Gerald D. ;
Halpert, Michael S. ;
Higgins, R. Wayne .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (20)
[86]   Decadal variations and trends of the global ocean carbon sink [J].
Landschuetzer, Peter ;
Gruber, Nicolas ;
Bakker, Dorothee C. E. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (10) :1396-1417
[87]   Arctic/Atlantic Exchanges via the Subpolar Gyre [J].
Langehaug, Helene R. ;
Medhaug, Iselin ;
Eldevik, Tor ;
Ottera, Odd Helge .
JOURNAL OF CLIMATE, 2012, 25 (07) :2421-2439
[88]   The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems [J].
Lannuzel, Delphine ;
Tedesco, Letizia ;
van Leeuwe, Maria ;
Campbell, Karley ;
Flores, Hauke ;
Delille, Bruno ;
Miller, Lisa ;
Stefels, Jacqueline ;
Assmy, Philipp ;
Bowman, Jeff ;
Brown, Kristina ;
Castellani, Giulia ;
Chierici, Melissa ;
Crabeck, Odile ;
Damm, Ellen ;
Else, Brent ;
Fransson, Agneta ;
Fripiat, Francois ;
Geilfus, Nicolas-Xavier ;
Jacques, Caroline ;
Jones, Elizabeth ;
Kaartokallio, Hermanni ;
Kotovitch, Marie ;
Meiners, Klaus ;
Moreau, Sebastien ;
Nomura, Daiki ;
Peeken, Ilka ;
Rintala, Janne-Markus ;
Steiner, Nadja ;
Tison, Jean-Louis ;
Vancoppenolle, Martin ;
Van der Linden, Fanny ;
Vichi, Marcello ;
Wongpan, Pat .
NATURE CLIMATE CHANGE, 2020, 10 (11) :983-992
[89]  
Large W., 2004, NCAR Tech. Rep. TN-460_STR, DOI DOI 10.5065/D6KK98Q6
[90]   Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets [J].
Latarius, K. ;
Quadfasel, D. .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2016, 114 :23-42