Machine Learning improves Forecast Accuracy for wind Power Generation Improvements in the Percent Range

被引:0
|
作者
不详
机构
来源
BWK | 2011年 / 63卷 / 09期
关键词
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
引用
收藏
页码:36 / +
页数:2
相关论文
共 50 条
  • [1] Deep and Machine Learning Models to Forecast Photovoltaic Power Generation
    Cantillo-Luna, Sergio
    Moreno-Chuquen, Ricardo
    Celeita, David
    Anders, George
    ENERGIES, 2023, 16 (10)
  • [2] Deep Learning Improves GFS Sea Surface Wind Field Forecast Accuracy in the Northwest Pacific Ocean
    Fu, Shu
    Huang, Wenyu
    Luo, Jingjia
    Liu, Dongqing
    Sun, Danyi
    Fu, Haohuan
    Luo, Yong
    Wang, Bin
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (13)
  • [3] Reducing Wind Power Forecast Error Based on Machine Learning Algorithms and Producers Merging
    Srpak, Dunja
    Havas, Ladislav
    Skok, Srdan
    Polajzer, Bostjan
    2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2019,
  • [4] Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine
    Wan, Can
    Xu, Zhao
    Pinson, Pierre
    Dong, Zhao Yang
    Wong, Kit Po
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) : 1033 - 1044
  • [5] Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation
    Cannon, Dirk
    Brayshaw, David
    Methven, John
    Drew, Daniel
    METEOROLOGISCHE ZEITSCHRIFT, 2017, 26 (03) : 239 - 252
  • [6] Wind power plants hybridised with solar power: A generation forecast perspective
    Couto, Antonio
    Estanqueiro, Ana
    JOURNAL OF CLEANER PRODUCTION, 2023, 423
  • [7] Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation
    Adedeji, Paul A.
    Akinlabi, Stephen A.
    Madushele, Nkosinathi
    Olatunji, Obafemi O.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (01) : 413 - 428
  • [8] Machine Learning for Wind Power Forecasting
    Cardoso de Figueiredo, Yann Fabricio
    Lima de Campos, Lidio Mauro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [9] Forecast on Short-Term Wind Speed and Wind Farm Power Generation
    Cheng, Yiping
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 80 - 86
  • [10] Hydro-power generation forecast in South Africa based on Machine Learning (ML) models
    Ramarope, Selaki Ivy
    Fatoba, Olawale Samuel
    Jen, Tien-Chien
    SCIENTIFIC AFRICAN, 2023, 22