An Effective Chronic Disease Prediction using Multi-Objective Firefly Optimisation Random Forest Algorithm

被引:0
|
作者
Priya, S. Kavi [1 ]
Saranya, N. [1 ]
机构
[1] Mepco Schlenk Engn Coll, Dept Comp Sci & Engn, Sivakasi, India
关键词
Chronic diseases; Firefly optimisation; Machine learning algorithms; MOFFA-RF; Multi-objective optimisation; Random forest; IDENTIFICATION;
D O I
10.1080/03772063.2022.2108916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, the solitary reasons for mortality in the world are chronic diseases such as heart disease, diabetes, and chronic kidney disease. These diseases should be diagnosed earlier; however, the technique is costly as well as it leads to many complications. Considering the complexity, datamining performs a major part in accurately classifying chronic disease. A new approach to classify chronic disease is by merging the multi-objective firefly optimisation algorithm (MOFFA) and random forest (RF). The main goal is generating an efficient and heterogeneous decision trees, while determining the optimum training sets to run at the same time. Rather utilising traditional approach like bootstrap, multi-objective firefly optimisation algorithm and random forest algorithm are proposed in this method. As a result, to train random forest, various training sets are generated with alternative instances and attributes. As a result, the performance of random forests can be improved and thus the prediction accuracy. The effectiveness of the proposed method is explored by juxtaposing the effectiveness of the proposed method with other classifiers for different datasets. The proposed work is tested on six UCI datasets. According to the findings, the proposed MOFFA-RF algorithm surpass other classifiers by the accuracy of 88% on CKD, 87% on CVD, 82% on diabetes, 88% on hepatitis, 88% on WBC, and 76% on ILPD.
引用
收藏
页码:307 / 321
页数:15
相关论文
共 50 条
  • [1] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [2] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2): : 134 - 144
  • [3] Multi Chronic Disease Prediction System Using CNN and Random Forest
    Chunduru A.
    Kishore A.R.
    Sasapu B.K.
    Seepana K.
    SN Computer Science, 5 (1)
  • [4] Effective Macrosomia Prediction Using Random Forest Algorithm
    Wang, Fangyi
    Wang, Yongchao
    Ji, Xiaokang
    Wang, Zhiping
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (06)
  • [5] Evolutionary Multi-objective Optimisation in Neurotrajectory Prediction
    Galvan, Edgar
    Stapleton, Fergal
    APPLIED SOFT COMPUTING, 2023, 146
  • [6] Multi-Objective Optimisation of Hot Forging Processes using a Genetic Algorithm
    Castro, C. F.
    Antonio, C. C.
    Sousa, L. C.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [7] Multi-Objective Ship Route Optimisation Using Estimation of Distribution Algorithm
    Debski, Roman
    Drezewski, Rafal
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [8] MULTI-OBJECTIVE OPTIMISATION OF LASER CUTTING USING CUCKOO SEARCH ALGORITHM
    Madic, M.
    Radovanovic, M.
    Trajanovic, M.
    Manic, M.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 (03) : 353 - 363
  • [9] Using Multi-Objective Optimization to build non-Random Forest
    Klikowska, Joanna
    Wozniak, Michal
    LOGIC JOURNAL OF THE IGPL, 2024,
  • [10] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321