Demonstration of Blind Quantum Computing

被引:331
作者
Barz, Stefanie [1 ,2 ]
Kashefi, Elham [3 ]
Broadbent, Anne [4 ,5 ]
Fitzsimons, Joseph F. [6 ,7 ]
Zeilinger, Anton [1 ,2 ]
Walther, Philip [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
[3] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[6] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[7] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会; 英国工程与自然科学研究理事会; 奥地利科学基金会; 欧洲研究理事会;
关键词
MANIPULATION; COMPUTATION; ALGORITHMS; SPINS;
D O I
10.1126/science.1214707
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 51 条
  • [1] Blind quantum computation
    Arrighi, Pablo
    Salvail, Louis
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (05) : 883 - 898
  • [2] Ben-Or M., 2010, Innovations in computer science (ICS), P453
  • [3] Picosecond coherent optical manipulation of a single electron spin in a quantum dot
    Berezovsky, J.
    Mikkelsen, M. H.
    Stoltz, N. G.
    Coldren, L. A.
    Awschalom, D. D.
    [J]. SCIENCE, 2008, 320 (5874) : 349 - 352
  • [4] Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits
    Bialczak, R. C.
    Ansmann, M.
    Hofheinz, M.
    Lucero, E.
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Wang, H.
    Wenner, J.
    Steffen, M.
    Cleland, A. N.
    Martinis, J. M.
    [J]. NATURE PHYSICS, 2010, 6 (06) : 409 - 413
  • [5] Boyer M, 1998, FORTSCHR PHYS, V46, P493, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO
  • [6] 2-P
  • [7] Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]
  • [8] Universal Blind Quantum Computation
    Broadbent, Anne
    Fitzsimons, Joseph
    Kashefi, Elham
    [J]. 2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 517 - 526
  • [9] Childs AM, 2005, QUANTUM INF COMPUT, V5, P456
  • [10] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094