Metasurface-Based Quantum Searcher on a Silicon-On-Insulator Chip

被引:5
作者
Wei, Zeyong [1 ,2 ,3 ]
Li, Haoyu [1 ]
Dou, Linyuan [1 ]
Xie, Lingyun [1 ,2 ,3 ]
Wang, Zhanshan [1 ,2 ,3 ]
Cheng, Xinbin [1 ,2 ,3 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Inst Precis Opt Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, MOE Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[3] Tongji Univ, Shanghai Frontiers Sci Res Base Digital Opt, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
metasurface; on-chip; optical analog computing; quantum search algorithm; IMPLEMENTATION; ALGORITHM; LIGHT;
D O I
10.3390/mi13081204
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Optical analog computing has natural advantages of parallel computation, high speed and low energy consumption over traditional digital computing. To date, research in the field of on-chip optical analog computing has mainly focused on classical mathematical operations. Despite the advantages of quantum computing, on-chip quantum analog devices based on metasurfaces have not been demonstrated so far. In this work, based on a silicon-on-insulator (SOI) platform, we illustrated an on-chip quantum searcher with a characteristic size of 60 x 20 mu m(2). We applied classical waves to simulate the quantum search algorithm based on the superposition principle and interference effect, while combining it with an on-chip metasurface to realize modulation capability. The marked items are found when the incident waves are focused on the marked positions, which is precisely the same as the efficiency of the quantum search algorithm. The proposed on-chip quantum searcher facilitates the miniaturization and integration of wave-based signal processing systems.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[2]   The power of analogies [J].
不详 .
NATURE PHOTONICS, 2014, 8 (01) :1-1
[3]   Implementation of quantum search algorithm using classical Fourier optics [J].
Bhattacharya, N ;
van den Heuvell, HBV ;
Spreeuw, RJC .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :1379011-1379014
[4]   Optical computation of the Laplace operator using phase-shifted Bragg grating [J].
Bykov, Dmitry A. ;
Doskolovich, Leonid L. ;
Bezus, Evgeni A. ;
Soifer, Victor A. .
OPTICS EXPRESS, 2014, 22 (21) :25084-25092
[5]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[6]   Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification [J].
Chang, Julie ;
Sitzmann, Vincent ;
Dun, Xiong ;
Heidrich, Wolfgang ;
Wetzstein, Gordon .
SCIENTIFIC REPORTS, 2018, 8
[7]   On-chip optical spatial-domain integrator based on Fourier optics and metasurface [J].
Chen, Chao ;
Qi, Wei ;
Yu, Yu ;
Zhang, Xinliang .
NANOPHOTONICS, 2021, 10 (09) :2481-2486
[8]   Simulate Deutsch-Jozsa algorithm with metamaterials [J].
Cheng, Kaiyang ;
Zhang, Weixuan ;
Wei, Zeyong ;
Fan, Yuancheng ;
Xu, Chaowei ;
Wu, Chao ;
Zhang, Xiangdong ;
Li, Hongqiang .
OPTICS EXPRESS, 2020, 28 (11) :16230-16243
[9]   Waterproof coatings for high-power laser cavities [J].
Cheng, Xinbin ;
Dong, Siyu ;
Zhi, Song ;
Paschel, Sebastian ;
Balasa, Istvan ;
Ristau, Detlev ;
Wang, Zhanshan .
LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
[10]   The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses [J].
Cheng, Xinbin ;
Zhang, Jinlong ;
Ding, Tao ;
Wei, Zeyong ;
Li, Hongqiang ;
Wang, Zhanshan .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e80-e80