Secant algorithms with nonmonotone trust region that employs fletcher penalty function for constrained optimization

被引:0
作者
Zhu, DT [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
关键词
trust region; secant methods; nonmonotonic technique; constrained optimization; Fletcher's penalty function;
D O I
10.1080/02331930108844556
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a family of secant algorithms in association with nonmonotone trust region strategy for nonlinear equality constrained optimization problems. The proposed algorithms are globally convergent while keeping the local superlinear rate by introducing Fletcher's penalty function as merit function.
引用
收藏
页码:121 / 153
页数:33
相关论文
共 19 条
[1]  
BOGS PT, 1982, SIAM J CONTROL OPTIM, V20, P161
[2]   CONTINUITY OF THE NULL SPACE BASIS AND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :32-41
[3]   APPROXIMATE SOLUTION OF THE TRUST REGION PROBLEM BY MINIMIZATION OVER TWO-DIMENSIONAL SUBSPACES [J].
BYRD, RH ;
SCHNABEL, RB ;
SHULTZ, GA .
MATHEMATICAL PROGRAMMING, 1988, 40 (03) :247-263
[4]  
Celis MR, 1984, NUMERICAL OPTIMIZATI, P71
[5]   ON THE LOCAL CONVERGENCE OF A QUASI-NEWTON METHOD FOR THE NONLINEAR-PROGRAMMING PROBLEM [J].
COLEMAN, TF ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :755-769
[6]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[7]   NONMONOTONIC TRUST REGION ALGORITHM [J].
DENG, NY ;
XIAO, Y ;
ZHOU, FJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :259-285
[8]   A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION [J].
FONTECILLA, R ;
STEIHAUG, T ;
TAPIA, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1133-1151
[9]   LOCAL CONVERGENCE OF SECANT METHODS FOR NONLINEAR CONSTRAINED OPTIMIZATION [J].
FONTECILLA, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (03) :692-712
[10]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716