NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE

被引:46
作者
Buecher, Axel [1 ]
Dette, Holger [1 ]
Volgushev, Stanislav [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
Extreme-value copula; minimum distance estimation; Pickands dependence function; weak convergence; empirical copula process; test for extreme-value dependence; VALUE DISTRIBUTIONS; NONPARAMETRIC-ESTIMATION; VALUE COPULAS; MODELS;
D O I
10.1214/11-AOS890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new class of estimators for Pickands dependence function which is based on the concept of minimum distance estimation. An explicit integral representation of the function A* (t), which minimizes a weighted L(2)-distance between the logarithm of the copula C(y(1-t), y(t)) and functions of the form A (t) log(y) is derived. If the unknown copula is an extreme-value copula, the function A* (t) coincides with Pickands dependence function. Moreover, even if this is not the case, the function A* (t) always satisfies the boundary conditions of a Pickands dependence function. The estimators are obtained by replacing the unknown copula by its empirical counterpart and weak convergence of the corresponding process is shown. A comparison with the commonly used estimators is performed from a theoretical point of view and by means of a simulation study. Our asymptotic and numerical results indicate that some of the new estimators outperform the estimators, which were recently proposed by Genest and Segers [Ann. Statist. 37 (2009) 2990-3022]. As a by-product of our results, we obtain a simple test for the hypothesis of an extreme-value copula, which is consistent against all positive quadrant dependent alternatives satisfying weak differentiability assumptions of first order.
引用
收藏
页码:1963 / 2006
页数:44
相关论文
共 38 条
[1]  
[Anonymous], 1970, NONPARAMETRIC TECHNI
[2]  
[Anonymous], 1959, FONCTIONS REPARTITIO
[3]  
[Anonymous], 2006, An introduction to copulas
[4]  
[Anonymous], 1960, PUBLICATIONS I STAT
[5]  
[Anonymous], ORDERED RESTRICTED S
[6]   On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence [J].
Ben Ghorbal, Noomen ;
Genest, Christian ;
Neslehova, Johanna .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04) :534-552
[7]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[8]  
BUCHER A, 2010, NEW ESTIMATORS PICKA, P79469
[9]   A note on bootstrap approximations for the empirical copula process [J].
Buecher, Axel ;
Dette, Holger .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) :1925-1932
[10]   A nonparametric estimation procedure for bivariate extreme value copulas [J].
Caperaa, P ;
Fougeres, AL ;
Genest, C .
BIOMETRIKA, 1997, 84 (03) :567-577