Non-Archimedean stability of an AQQ functional equation

被引:0
作者
Azadi-Kenary, Hassan [2 ]
Lee, Jung Rye [1 ]
Park, Choonkil [3 ]
机构
[1] Daejin Univ, Dept Math, Kyeonggi 487711, South Korea
[2] Univ Yasuj, Coll Sci, Dept Math, Yasuj 75914353, Iran
[3] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam stability; non-Archimedean normed space; p-adic field; ULAM-RASSIAS STABILITY; C-ASTERISK-ALGEBRAS; MAPPINGS; SPACES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, Mohammadi et al. [24] proved the Hyers-Ulam stability of the following additive-quadratic-quartic functional equation f (x + 2y) + f (x - 2y) = 2f (x + y) + 2f (-x - y) + 21 (x - y) + 2f (y - x) - 4f (-x) - 2f (x) + f (2y) + f (-2y) - 4f (y) - 4f (-y) in random normed spaces. In this paper, we prove the Hyers-Ulam stability of the above functional equation in non-Archimedean normed spaces.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 34 条
  • [1] [Anonymous], J INEQUALITIES APPL
  • [2] [Anonymous], HYERSULAMRASSIAS STA
  • [3] [Anonymous], 2003, Aequationes Math., V66, P191
  • [4] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [5] Aoki T., 1950, J. Math. Soc. Japan, V2, P64
  • [6] Arriola LM, 2005, REAL ANAL EXCH, V31, P125
  • [7] Azadi-Kenary H., RENDICONTI IN PRESS
  • [8] Azadi-Kenary H., ITALIAN J P IN PRESS
  • [9] Azadi-Kenary H., 2009, J MATH EXTENSION, V4, P1
  • [10] Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]