Spectral and Multi-spatial-feature based deep learning for hyperspectral remote sensing image classification

被引:0
|
作者
Chen, Chen [1 ]
Zhang, JingJing [1 ]
Li, Teng [1 ]
Yan, Qing [1 ,2 ]
Xun, LiNa [1 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Coll Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Hyperspectral image classification; deep learning; autoencoder (AE); feature extraction; stacked autoencoder (SAE); logistic regression (LR); support vector machine (SVM);
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hyperspectral data has a strong ability in information expression. In this paper, we will extract a variety of spectral features and Multi-spatial-dominated features. In order to make better use of the relationship between spatial neighborhood pixels, we introduce spatial features with two different window scales, which can be give us more abundant spatial information, and then we used a novel framework to merge this extracted features. This deep learning framework is made of sparse component analysis (SPCA), deep learning architecture, and logistic regression. For hyperspectral image classification, stacked autoencoders is an efficient deep learning framework. In detail, compared with principle component analysis (PCA), SPCA has a better effect on dimensionality reduction of nonlinear data, especially for hyperspectral data. The public data set Pavia Centre scene and Pavia University scene are used to test our proposed algorithm. Experimental results demonstrate that the proposed approach outperforms the compared. It also shows that the hyperspectral data classification based on deep learning has an excellent application prospect.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [21] Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    Zhao, Wenzhi
    Du, Shihong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4544 - 4554
  • [22] SPECTRAL PARTITIONING FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION
    Liu, Yi
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose
    Cuartero, Aurora
    Garcia Rodriguez, Pablo
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3434 - 3437
  • [23] Spectral perturbation method for deep learning-based classification of remote sensing hyperspectral images
    Madani, Hadis
    McIsaac, Kenneth
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [24] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [25] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTISCALE SPATIAL AND SPECTRAL FEATURE NETWORK
    Tang, Xu
    Meng, Fanbo
    Ma, Jingjing
    Zhang, Xiangrong
    Liu, Fang
    Peng, Qunnie
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 838 - 841
  • [26] Hyperspectral image classification based on multi-branch spatial-spectral feature enhancement
    Li, Tie
    Li, Wenxu
    Wang, Junguo
    Gao, Qiaoyu
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (06) : 844 - 855
  • [27] Spectral and Spatial Feature Fusion for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Zhou, Lijian
    Ye, Yuanxin
    Wang, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] Sequential Spectral-Spatial Feature Convolution Network With Self-Attention for Remote Sensing Hyperspectral Image Classification
    Liu, Jiqing
    Wang, Han
    Liu, Renhe
    Wang, Shaochu
    Liu, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63