Spectral and Multi-spatial-feature based deep learning for hyperspectral remote sensing image classification

被引:0
作者
Chen, Chen [1 ]
Zhang, JingJing [1 ]
Li, Teng [1 ]
Yan, Qing [1 ,2 ]
Xun, LiNa [1 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Coll Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
来源
PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR) | 2018年
基金
美国国家科学基金会;
关键词
Hyperspectral image classification; deep learning; autoencoder (AE); feature extraction; stacked autoencoder (SAE); logistic regression (LR); support vector machine (SVM);
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hyperspectral data has a strong ability in information expression. In this paper, we will extract a variety of spectral features and Multi-spatial-dominated features. In order to make better use of the relationship between spatial neighborhood pixels, we introduce spatial features with two different window scales, which can be give us more abundant spatial information, and then we used a novel framework to merge this extracted features. This deep learning framework is made of sparse component analysis (SPCA), deep learning architecture, and logistic regression. For hyperspectral image classification, stacked autoencoders is an efficient deep learning framework. In detail, compared with principle component analysis (PCA), SPCA has a better effect on dimensionality reduction of nonlinear data, especially for hyperspectral data. The public data set Pavia Centre scene and Pavia University scene are used to test our proposed algorithm. Experimental results demonstrate that the proposed approach outperforms the compared. It also shows that the hyperspectral data classification based on deep learning has an excellent application prospect.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [1] Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Wang, Lizhe
    Zhang, Jiabin
    Liu, Peng
    Choo, Kim-Kwang Raymond
    Huang, Fang
    SOFT COMPUTING, 2017, 21 (01) : 213 - 221
  • [2] Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Lizhe Wang
    Jiabin Zhang
    Peng Liu
    Kim-Kwang Raymond Choo
    Fang Huang
    Soft Computing, 2017, 21 : 213 - 221
  • [3] Deep Feature Aggregation Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Chunju
    Li, Guandong
    Lei, Runmin
    Du, Shihong
    Zhang, Xueying
    Zheng, Hui
    Wu, Zhaofu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5314 - 5325
  • [4] Spectral-spatial classification of hyperspectral remote sensing image based on capsule network
    Jia, Sen
    Zhao, Baojun
    Tang, Linbo
    Feng, Fan
    Wang, WenZheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7352 - 7355
  • [5] Graph-based spatial-spectral feature learning for hyperspectral image classification
    Ahmad, Muhammad
    Khan, Adil Mehmood
    Hussain, Rasheed
    IET IMAGE PROCESSING, 2017, 11 (12) : 1310 - 1316
  • [6] Novel Deep-Learning-Based Spatial-Spectral Feature Extraction For Hyperspectral Remote Sensing Applications
    Praveen, Bishwas
    Menon, Vineetha
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5444 - 5452
  • [7] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Hyperspectral Image Classification Based on Deep Forest and Spectral-Spatial Cooperative Feature
    Li, Mingyang
    Zhang, Ning
    Pan, Bin
    Xie, Shaobiao
    Wu, Xi
    Shi, Zhenwei
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 325 - 336
  • [9] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Hyperspectral Image Classification Based on Spectral Spatial Feature Extraction and Deep Rotation Forest Ensemble with AdaBoost
    Deng, Lindiao
    Cao, Guo
    Xu, Ling
    Xu, Hao
    Pan, Qikun
    Ding, Lanwei
    Shang, Yanfeng
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705