Spectral and Multi-spatial-feature based deep learning for hyperspectral remote sensing image classification

被引:0
|
作者
Chen, Chen [1 ]
Zhang, JingJing [1 ]
Li, Teng [1 ]
Yan, Qing [1 ,2 ]
Xun, LiNa [1 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Coll Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Hyperspectral image classification; deep learning; autoencoder (AE); feature extraction; stacked autoencoder (SAE); logistic regression (LR); support vector machine (SVM);
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hyperspectral data has a strong ability in information expression. In this paper, we will extract a variety of spectral features and Multi-spatial-dominated features. In order to make better use of the relationship between spatial neighborhood pixels, we introduce spatial features with two different window scales, which can be give us more abundant spatial information, and then we used a novel framework to merge this extracted features. This deep learning framework is made of sparse component analysis (SPCA), deep learning architecture, and logistic regression. For hyperspectral image classification, stacked autoencoders is an efficient deep learning framework. In detail, compared with principle component analysis (PCA), SPCA has a better effect on dimensionality reduction of nonlinear data, especially for hyperspectral data. The public data set Pavia Centre scene and Pavia University scene are used to test our proposed algorithm. Experimental results demonstrate that the proposed approach outperforms the compared. It also shows that the hyperspectral data classification based on deep learning has an excellent application prospect.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [1] Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Lizhe Wang
    Jiabin Zhang
    Peng Liu
    Kim-Kwang Raymond Choo
    Fang Huang
    Soft Computing, 2017, 21 : 213 - 221
  • [2] Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification
    Wang, Lizhe
    Zhang, Jiabin
    Liu, Peng
    Choo, Kim-Kwang Raymond
    Huang, Fang
    SOFT COMPUTING, 2017, 21 (01) : 213 - 221
  • [3] Spatial-Spectral Metric Learning for Hyperspectral Remote Sensing Image Classification
    Peng, Jiangtao
    Zhou, Yicong
    Chen, C. L. Philip
    IMAGING SPECTROMETRY XIX, 2014, 9222
  • [4] Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning
    Han, Yanling
    Gao, Yi
    Zhang, Yun
    Wang, Jing
    Yang, Shuhu
    REMOTE SENSING, 2019, 11 (18)
  • [5] MULTI SPECTRAL-SPATIAL GABOR FEATURE FUSION BASED ON END-TO-END DEEP LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hanachi, Refka
    Sellami, Akrem
    Farah, Imed Riadh
    Dalla Mura, Mauro
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [6] Deep Feature Aggregation Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Chunju
    Li, Guandong
    Lei, Runmin
    Du, Shihong
    Zhang, Xueying
    Zheng, Hui
    Wu, Zhaofu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5314 - 5325
  • [7] Novel Deep-Learning-Based Spatial-Spectral Feature Extraction For Hyperspectral Remote Sensing Applications
    Praveen, Bishwas
    Menon, Vineetha
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5444 - 5452
  • [8] Spectral-spatial classification of hyperspectral remote sensing image based on capsule network
    Jia, Sen
    Zhao, Baojun
    Tang, Linbo
    Feng, Fan
    Wang, WenZheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7352 - 7355
  • [9] Hyperspectral Image Classification Based on Deep Forest and Spectral-Spatial Cooperative Feature
    Li, Mingyang
    Zhang, Ning
    Pan, Bin
    Xie, Shaobiao
    Wu, Xi
    Shi, Zhenwei
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 325 - 336
  • [10] Multi-type spectral spatial feature for hyperspectral image classification
    Yuan, Yuan
    Jin, Mingxin
    NEUROCOMPUTING, 2022, 492 : 637 - 650