Manifold learning of four-dimensional scanning transmission electron microscopy

被引:40
|
作者
Li, Xin [1 ,2 ]
Dyck, Ondrej E. [1 ,2 ]
Oxley, Mark P. [1 ,2 ]
Lupini, Andrew R. [1 ,2 ]
McInnes, Leland [3 ]
Healy, John [3 ]
Jesse, Stephen [1 ,2 ]
Kalinin, Sergei, V [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
[3] Tutte Inst Math & Comp, Ottawa, ON, Canada
关键词
DIFFERENTIAL PHASE-CONTRAST; PTYCHOGRAPHY; DETECTOR; FIELDS; ATOMS;
D O I
10.1038/s41524-018-0139-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four-dimensional scanning transmission electron microscopy (4D-STEM) of local atomic diffraction patterns is emerging as a powerful technique for probing intricate details of atomic structure and atomic electric fields. However, efficient processing and interpretation of large volumes of data remain challenging, especially for two-dimensional or light materials because the diffraction signal recorded on the pixelated arrays is weak. Here we employ data-driven manifold leaning approaches for straightforward visualization and exploration analysis of 4D-STEM datasets, distilling real-space neighboring effects on atomically resolved deflection patterns from single-layer graphene, with single dopant atoms, as recorded on a pixelated detector. These extracted patterns relate to both individual atom sites and sublattice structures, effectively discriminating single dopant anomalies via multimode views. We believe manifold learning analysis will accelerate physics discoveries coupled between data-rich imaging mechanisms and materials such as ferroelectric, topological spin, and van der Waals heterostructures.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Jeffrey M. Ede
    Richard Beanland
    Scientific Reports, 10
  • [42] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Ede, Jeffrey M.
    Beanland, Richard
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Automated Crystal Orientation Mapping by Precession Electron Diffraction-Assisted Four-Dimensional Scanning Transmission Electron Microscopy Using a Scintillator-Based CMOS Detector
    Jeong, Jiwon
    Cautaerts, Niels
    Dehm, Gerhard
    Liebscher, Christian H.
    MICROSCOPY AND MICROANALYSIS, 2021, 27 (05) : 1102 - 1112
  • [44] Ultrafast core-loss spectroscopy in four-dimensional electron microscopy
    van der Veen, Renske M.
    Penfold, Thomas J.
    Zewail, Ahmed H.
    STRUCTURAL DYNAMICS-US, 2015, 2 (02):
  • [45] Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy
    Fitzpatrick, Anthony W. P.
    Vanacore, Giovanni M.
    Zewail, Ahmed H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) : 3380 - 3385
  • [46] The average (n) sphere spans a four-dimensional manifold
    El Naschie, MS
    CHAOS SOLITONS & FRACTALS, 1998, 9 (10) : 1789 - 1792
  • [47] Development of five-dimensional scanning transmission electron microscopy
    Shimojima, T.
    Nakamura, A.
    Ishizaka, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02):
  • [48] The average (n) sphere spans a four-dimensional manifold
    Department of Applied Mathematics and Theoretical Physics, Cambridge, United Kingdom
    Chaos Solitons Fractals, 10 (1789-1792):
  • [49] Average (n) sphere spans a four-dimensional manifold
    El Naschie, M.S.
    Chaos, solitons and fractals, 1998, 9 (10): : 1789 - 1792
  • [50] Mapping Nanoscale Electrostatic Field Fluctuations around Graphene Dislocation Cores Using Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM)
    Coupin, Matthew J.
    Wen, Yi
    Lee, Sungwoo
    Saxena, Anshul
    Ophus, Colin
    Allen, Christopher S.
    Kirkland, Angus I.
    Aluru, Narayana R.
    Lee, Gun-Do
    Warner, Jamie H.
    NANO LETTERS, 2023, 23 (15) : 6807 - 6814