Manifold learning of four-dimensional scanning transmission electron microscopy

被引:40
作者
Li, Xin [1 ,2 ]
Dyck, Ondrej E. [1 ,2 ]
Oxley, Mark P. [1 ,2 ]
Lupini, Andrew R. [1 ,2 ]
McInnes, Leland [3 ]
Healy, John [3 ]
Jesse, Stephen [1 ,2 ]
Kalinin, Sergei, V [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
[3] Tutte Inst Math & Comp, Ottawa, ON, Canada
关键词
DIFFERENTIAL PHASE-CONTRAST; PTYCHOGRAPHY; DETECTOR; FIELDS; ATOMS;
D O I
10.1038/s41524-018-0139-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four-dimensional scanning transmission electron microscopy (4D-STEM) of local atomic diffraction patterns is emerging as a powerful technique for probing intricate details of atomic structure and atomic electric fields. However, efficient processing and interpretation of large volumes of data remain challenging, especially for two-dimensional or light materials because the diffraction signal recorded on the pixelated arrays is weak. Here we employ data-driven manifold leaning approaches for straightforward visualization and exploration analysis of 4D-STEM datasets, distilling real-space neighboring effects on atomically resolved deflection patterns from single-layer graphene, with single dopant atoms, as recorded on a pixelated detector. These extracted patterns relate to both individual atom sites and sublattice structures, effectively discriminating single dopant anomalies via multimode views. We believe manifold learning analysis will accelerate physics discoveries coupled between data-rich imaging mechanisms and materials such as ferroelectric, topological spin, and van der Waals heterostructures.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Modelling the inelastic scattering of fast electrons [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 151 :11-22
[2]   Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection [J].
Campello, Ricardo J. G. B. ;
Moulavi, Davoud ;
Zimek, Arthur ;
Sander, Joerg .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 10 (01)
[4]   MODIFIED DIFFERENTIAL PHASE-CONTRAST LORENTZ MICROSCOPY FOR IMPROVED IMAGING OF MAGNETIC-STRUCTURES [J].
CHAPMAN, JN ;
MCFADYEN, IR ;
MCVITIE, S .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) :1506-1511
[5]  
Dasgupta S, 2008, ACM S THEORY COMPUT, P537
[6]  
DEKKERS NH, 1974, OPTIK, V41, P452
[7]  
Dong W., 2011, WWW 11, P577, DOI [DOI 10.1145/1963405.1963487, 10.1145/1963405.1963487]
[8]   E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope [J].
Dyck, Ondrej ;
Kim, Songkil ;
Kalinin, Sergei V. ;
Jesse, Stephen .
NANO RESEARCH, 2018, 11 (12) :6217-6226
[9]   Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies [J].
Dyck, Ondrej ;
Kim, Songkil ;
Kalinin, Sergei V. ;
Jesse, Stephen .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (01)
[10]   Placing single atoms in graphene with a scanning transmission electron microscope [J].
Dyck, Ondrej ;
Kim, Songkil ;
Kalinin, Sergei V. ;
Jesse, Stephen .
APPLIED PHYSICS LETTERS, 2017, 111 (11)