Duality-based two-level error estimation for time-dependent PDEs: Application to linear and nonlinear parabolic equations

被引:13
作者
Simsek, G. [1 ]
Wu, X. [1 ]
van der Zee, K. G. [2 ]
van Brummelen, E. H. [1 ]
机构
[1] Eindhoven Univ Technol, Multiscale Engn Fluid Dynam, NL-5600 MB Eindhoven, Netherlands
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
posteriori error estimation; Energy norm; Duality-based error estimation; Cahn-Hilliard equation; Space-time error; Adaptivity; CAHN-HILLIARD MODELS; FUNCTIONAL OUTPUTS; ADAPTIVITY; DISCRETIZATION; REFINEMENT; STABILITY; FRACTURE; BOUNDS;
D O I
10.1016/j.cma.2014.11.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a duality-based two-level error estimator for linear and nonlinear time-dependent problems. The error measure can be a space-time norm, energy norm, final-time error or other error related functional. The general methodology is developed for an abstract nonlinear parabolic PDE and subsequently applied to linear heat and nonlinear Cahn-Hilliard equations. The error due to finite element approximations is estimated with a residual weighted approximate-dual solution which is computed with two primal approximations at nested levels. We prove that the exact error is estimated by our estimator up to higher-order remainder terms. Numerical experiments confirm the theory regarding consistency of the dual-based two-level estimator. We also present a novel space-time adaptive strategy to control errors based on the new estimator. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 109
页数:27
相关论文
共 47 条
[31]   GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING [J].
Oden, J. Tinsley ;
Hawkins, Andrea ;
Prudhomme, Serge .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (03) :477-517
[32]   Goal-oriented error estimation and adaptivity for the finite element method [J].
Oden, JT ;
Prudhomme, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (5-6) :735-756
[33]   Asymptotically exact functional error estimators based on superconvergent gradient recovery [J].
Ovall, JS .
NUMERISCHE MATHEMATIK, 2006, 102 (03) :543-558
[34]   Bounds of functional outputs for parabolic problems.: Part 1:: Exact bounds of the discontinuous Galerkin time discretization [J].
Pares, Nuria ;
Diez, Pedro ;
Huerta, Antonio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (19-20) :1641-1660
[35]   Bounds of functional outputs for parabolic problems.: Part II:: Bounds of the exact solution [J].
Pares, Nuria ;
Diez, Pedro ;
Huerta, Antonio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (19-20) :1661-1679
[36]  
Perotto S., 2013, J SCI COMPUT, P1
[37]  
Provatas N., 2010, Phase-Field Methods in Materials Science and Engineering, DOI [DOI 10.1002/9783527631520, 10.1002/9783527631520]
[38]   Approximation of Cahn-Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements [J].
Stogner, Roy H. ;
Carey, Graham F. ;
Murray, Bruce T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (05) :636-661
[39]   Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints [J].
van der Zee, K. G. ;
van Brummelen, E. H. ;
Akkerman, I. ;
de Borst, R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) :2738-2757
[40]   GOAL-ORIENTED ERROR ESTIMATION AND ADAPTIVITY FOR FREE-BOUNDARY PROBLEMS: THE DOMAIN-MAP LINEARIZATION APPROACH [J].
van der Zee, K. G. ;
van Brummelen, E. H. ;
de Borst, R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) :1064-1092