Room-temperature superfluorescence in hybrid perovskites and its origins

被引:71
作者
Biliroglu, Melike [1 ,2 ]
Findik, Gamze [1 ,2 ]
Mendes, Juliana [2 ,3 ]
Seyitliyev, Dovletgeldi [1 ,2 ]
Lei, Lei [2 ,3 ]
Dong, Qi [2 ,3 ]
Mehta, Yash [2 ,3 ]
Temnov, Vasily V. [4 ,5 ]
So, Franky [2 ,3 ]
Gundogdu, Kenan [1 ,2 ]
机构
[1] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Organ & Carbon Elect Labs ORaCEL, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC USA
[4] Le Mans Univ, UMR CNRS 6283, Inst Mol & Mat Mans, Le Mans, France
[5] Inst Polytech Paris, CNRS, CEA DRF IRAMIS, LSI,Ecole Polytech, Palaiseau, France
基金
美国国家科学基金会;
关键词
FLUCTUATIONS;
D O I
10.1038/s41566-022-00974-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The formation of coherent macroscopic states and the manipulation of their entanglement using external stimuli are essential for emerging quantum applications. However, the observation of collective quantum phenomena such as Bose-Einstein condensation, superconductivity, superfluidity and superradiance has been limited to extremely low temperatures to suppress dephasing due to random thermal agitations. Here we report room-temperature superfluorescence in hybrid perovskite thin films. This surprising discovery shows that in this material platform, there exists an extremely strong immunity to electronic dephasing due to thermal processes. To explain this observation, we propose that the formation of large polarons in hybrid perovskites provides a quantum analogue of vibration isolation to electronic excitation and protects it against dephasing even at room temperature. Understanding the origins of sustained quantum coherence and the superfluorescence phase transition at high temperatures can provide guidance to design systems for emerging quantum information technologies and to realize similar high-temperature macroscopic quantum phenomena in tailored materials. Superfluorescence-the collective emission of fluorescent light-is observed at temperatures up to 330 K in lead halide perovskite thin films. This finding suggests an intrinsic mechanism for protecting the electronic coherence in these materials.
引用
收藏
页码:324 / +
页数:7
相关论文
共 37 条
[1]   Ultrafast laser control of backward superfluorescence towards standoff sensing [J].
Ariunbold, Gombojav O. ;
Sautenkov, Vladimir A. ;
Rostovtsev, Yuri V. ;
Scully, Marlan O. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[2]   Quantum fluctuations of superfluorescence delay observed with ultrashort optical excitations [J].
Ariunbold, Gombojav O. ;
Sautenkov, Vladimir A. ;
Scully, Marlan O. .
PHYSICS LETTERS A, 2012, 376 (04) :335-338
[3]  
Benedict M. G., 2018, Super-Radiance: Multiatomic Coherent Emission
[4]   Entanglement criteria for Dicke states [J].
Bergmann, Marcel ;
Guehne, Otfried .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (38)
[5]   COHERENT RESONANCE FLUORESCENCE EXCITED BY SHORT LIGHT PULSES [J].
BURNHAM, DC ;
CHIAO, RY .
PHYSICAL REVIEW, 1969, 188 (02) :667-+
[6]   Uncovering the Electron-Phonon Interplay and Dynamical Energy-Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites [J].
Chan, Christopher C. S. ;
Fan, Kezhou ;
Wang, Han ;
Huang, Zhanfeng ;
Novko, Dino ;
Yan, Keyou ;
Xu, Jianbin ;
Choy, Wallace C. H. ;
Loncaric, Ivor ;
Wong, Kam Sing .
ADVANCED ENERGY MATERIALS, 2021, 11 (09)
[7]  
Dai D., 2011, BRIEF COMMENT DICKE
[8]   Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: Evidence for spontaneous Bose-Einstein condensation of excitons [J].
Dai, D. C. ;
Monkman, A. P. .
PHYSICAL REVIEW B, 2011, 84 (11)
[9]  
Eastham P R., 2017, Universal Themes of Bose-Einstein Condensation, P462
[10]  
Emin D., 2012, Polarons, V1