Energy cascade and intermittency in helically decomposed Navier-Stokes equations

被引:10
|
作者
Sahoo, Ganapati [1 ,2 ,3 ,4 ]
Biferale, Luca [3 ,4 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Univ Roma Tor Vergata, Dept Phys, Rome, Italy
[4] Univ Roma Tor Vergata, INFN, Rome, Italy
基金
欧洲研究理事会;
关键词
turbulence; helicity; intermittency; direct numerical simulations; 3-DIMENSIONAL HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; HELICITY CASCADES; FLOWS; SIMULATIONS; DYNAMICS; NUMBER;
D O I
10.1088/1873-7005/aa839a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the nature of the triadic interactions in Fourier space for three-dimensional Navier-Stokes equations based on the helicity content of the participating modes. Using the tool of helical Fourier decomposition we are able to access the effects of a group of triads on the energy cascade process and on the small-scale intermittency. We show that while triadic interactions involving modes with only one sign of helicity results to an inverse cascade of energy and to a complete depletion of the intermittency, absence of such triadic interactions has no visible effect on the energy cascade and on the inertial-range intermittency of the three-dimensional Navier-Stokes equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hidden scale invariance in Navier-Stokes intermittency
    Mailybaev, Alexei A.
    Thalabard, Simon
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2218):
  • [2] λ-Navier-Stokes turbulence
    Alexakis, A.
    Biferale, L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2219):
  • [3] Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation
    Steelant, J
    Dick, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 23 (03) : 193 - 220
  • [4] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [5] Disentangling the triadic interactions in Navier-Stokes equations
    Sahoo, Ganapati
    Biferale, Luca
    EUROPEAN PHYSICAL JOURNAL E, 2015, 38 (10) : 1 - 8
  • [6] Variational Multiscale Proper Orthogonal Decomposition: Navier-Stokes Equations
    Iliescu, Traian
    Wang, Zhu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 641 - 663
  • [7] Discrete Energy-Conservation Properties in the Numerical Simulation of the Navier-Stokes Equations
    Coppola, Gennaro
    Capuano, Francesco
    de Luca, Luigi
    APPLIED MECHANICS REVIEWS, 2019, 71 (01)
  • [8] Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable
    Lin, Lianlei
    Yang, Zhiguo
    Dong, Suchuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 1 - 22
  • [9] ENSTROPHY CASCADE IN PHYSICAL SCALES FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Leitmeyer, Keith
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) : 166 - 173
  • [10] Vorticity moments in four numerical simulations of the 3D Navier-Stokes equations
    Donzis, Diego A.
    Gibbon, John D.
    Gupta, Anupam
    Kerr, Robert M.
    Pandit, Rahul
    Vincenzi, Dario
    JOURNAL OF FLUID MECHANICS, 2013, 732 : 316 - 331