Fisher information regularization schemes for Wasserstein gradient flows

被引:28
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Wasserstein Distributionally Robust Optimization and Variation Regularization
    Gao, Rui
    Chen, Xi
    Kleywegtc, Anton J.
    OPERATIONS RESEARCH, 2024, 72 (03) : 1177 - 1191
  • [32] DOUBLY NONLINEAR DIFFUSIVE PDEs: NEW EXISTENCE RESULTS VIA GENERALIZED WASSERSTEIN GRADIENT FLOWS
    Caillet, Thibault
    Santambrogio, Filippo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) : 7043 - 7073
  • [33] GENERALIZED SAV-EXPONENTIAL INTEGRATOR SCHEMES FOR ALLEN--CAHN TYPE GRADIENT FLOWS
    Ju, Lili
    LI, Xiao
    Qiao, Zhonghua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 1905 - 1931
  • [34] Wasserstein Adversarial Regularization for Learning With Label Noise
    Fatras, Kilian
    Damodaran, Bharath Bhushan
    Lobry, Sylvain
    Flamary, Remi
    Tuia, Devis
    Courty, Nicolas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 7296 - 7306
  • [35] A general class of linear unconditionally energy stable schemes for the gradient flows
    Tan, Zengqiang
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 464
  • [36] DISCRETIZATION OF FLUX-LIMITED GRADIENT FLOWS: Γ-CONVERGENCE AND NUMERICAL SCHEMES
    Matthes, Daniel
    Soellner, Benjamin
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1027 - 1057
  • [37] SPHERICAL HELLINGER-KANTOROVICH GRADIENT FLOWS
    Kondratyev, Stanislav
    Vorotnikov, Dmitry
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2053 - 2084
  • [38] Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes
    Turinici, Gabriel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 165 : 163 - 181
  • [39] Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction
    Arnrich, Steffen
    Mielke, Alexander
    Peletier, Mark A.
    Savare, Giuseppe
    Veneroni, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (3-4) : 419 - 454
  • [40] CONVERGENCE AND ERROR ANALYSIS FOR THE SCALAR AUXILIARY VARIABLE (SAV) SCHEMES TO GRADIENT FLOWS
    Shen, Jie
    Xu, Jie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 2895 - 2912