Fisher information regularization schemes for Wasserstein gradient flows

被引:28
|
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] The back-and-forth method for Wasserstein gradient flows
    Jacobs, Matt
    Lee, Wonjun
    Leger, Flavien
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [12] GRADIENT FLOWS FOR PROBABILISTIC FRAME POTENTIALS IN THE WASSERSTEIN SPACE
    Wickman, Clare
    Okoudjou, Kasso A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 2324 - 2346
  • [13] Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows
    Crucinio, Francesca R.
    De Bortoli, Valentin
    Doucet, Arnaud
    Johansen, Adam M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 173
  • [14] LEARNING GAUSSIAN MIXTURES USING THE WASSERSTEIN-FISHER-RAO GRADIENT FLOW
    Yan, Yuling
    Wang, Kaizheng
    Rigollet, Philippe
    ANNALS OF STATISTICS, 2024, 52 (04) : 1774 - 1795
  • [15] FROM GEODESIC EXTRAPOLATION TO A VARIATIONAL BDF2 SCHEME FOR WASSERSTEIN GRADIENT FLOWS
    Gallouet, Thomas o.
    Natale, Andrea
    Todeschi, Gabriele
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2769 - 2810
  • [16] Computations of Optimal Transport Distance with Fisher Information Regularization
    Wuchen Li
    Penghang Yin
    Stanley Osher
    Journal of Scientific Computing, 2018, 75 : 1581 - 1595
  • [17] Computations of Optimal Transport Distance with Fisher Information Regularization
    Li, Wuchen
    Yin, Penghang
    Osher, Stanley
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1581 - 1595
  • [18] A class of unconditionally energy stable relaxation schemes for gradient flows
    Zhang, Gengen
    Li, Jingyu
    Huang, Qiong-Ao
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 218 : 235 - 247
  • [19] Stochastic Wasserstein Hamiltonian Flows
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3885 - 3921
  • [20] NONLINEAR DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS AS GRADIENT FLOWS IN WASSERSTEIN SPACES
    Lisini, Stefano
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) : 712 - 740