Fisher information regularization schemes for Wasserstein gradient flows

被引:28
|
作者
Li, Wuchen [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Wang, Li [5 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Los Angeles, CA 90095 USA
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[5] Univ Minnesota, Sch Math, St Paul, MN 55455 USA
关键词
NONLINEAR CONTINUITY EQUATIONS; OPTIMAL TRANSPORT; NUMERICAL-SIMULATION; ENTROPY DISSIPATION; LOCAL MINIMIZERS; MASS; MODEL; CONVERGENCE; CHEMOTAXIS; ALGORITHM;
D O I
10.1016/j.jcp.2020.109449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a variational scheme for computing Wasserstein gradient flows. The scheme builds upon the Jordan–Kinderlehrer–Otto framework with the Benamou-Brenier's dynamic formulation of the quadratic Wasserstein metric and adds a regularization by the Fisher information. This regularization can be derived in terms of energy splitting and is closely related to the Schrödinger bridge problem. It improves the convexity of the variational problem and automatically preserves the non-negativity of the solution. As a result, it allows us to apply sequential quadratic programming to solve the sub-optimization problem. We further save the computational cost by showing that no additional time interpolation is needed in the underlying dynamic formulation of the Wasserstein-2 metric, and therefore, the dimension of the problem is vastly reduced. Several numerical examples, including porous media equation, nonlinear Fokker-Planck equation, aggregation diffusion equation, and Derrida-Lebowitz-Speer-Spohn equation, are provided. These examples demonstrate the simplicity and stableness of the proposed scheme. © 2020 Elsevier Inc.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [2] Entropic Approximation of Wasserstein Gradient Flows
    Peyre, Gabriel
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2323 - 2351
  • [3] A new flow dynamic approach for Wasserstein gradient flows
    Cheng, Qing
    Liu, Qianqian
    Chen, Wenbin
    Shen, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [4] A variational finite volume scheme for Wasserstein gradient flows
    Cances, Clement
    Gallouet, Thomas O.
    Todeschi, Gabriele
    NUMERISCHE MATHEMATIK, 2020, 146 (03) : 437 - 480
  • [5] High order spatial discretization for variational time implicit schemes: Wasserstein gradient flows and reaction-diffusion systems
    Fu, Guosheng
    Osher, Stanley
    Li, Wuchen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [6] Wasserstein Gradient Flow of the Fisher Information from a Non-Smooth Convex Minimization Viewpoint
    Carlier, Guillaume
    Benamou, Jean-David
    Matthes, Daniel
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 359 - 378
  • [7] {Euclidean, metric, and Wasserstein} gradient flows: an overview
    Santambrogio, Filippo
    BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (01) : 87 - 154
  • [8] Variational inference via Wasserstein gradient flows
    Lambert, Marc
    Chewi, Sinho
    Bach, Francis
    Bonnabel, Silvere
    Rigollet, Philippe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Primal Dual Methods for Wasserstein Gradient Flows
    José A. Carrillo
    Katy Craig
    Li Wang
    Chaozhen Wei
    Foundations of Computational Mathematics, 2022, 22 : 389 - 443
  • [10] ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS
    Disser, Karoline
    Liero, Matthias
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 233 - 253